
AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE

CARAlert data update 24

1 July 2021-31 August 2021

November 2021

Published by the Australian Commission on Safety and Quality in Health Care Level 5, 255 Elizabeth Street, Sydney NSW 2000

Phone: (02) 9126 3600 Fax: (02) 9126 3613

Email: caralert@safetyandquality.gov.au Website: www.safetyandquality.gov.au

© Australian Commission on Safety and Quality in Health Care 2021

All material and work produced by the Australian Commission on Safety and Quality in Health Care (the Commission) is protected by copyright. The Commission reserves the right to set out the terms and conditions for the use of such material.

As far as practicable, material for which the copyright is owned by a third party will be clearly labelled. The Commission has made all reasonable efforts to ensure that this material has been reproduced in this publication with the full consent of the copyright owners.

With the exception of any material protected by a trademark, any content provided by third parties and where otherwise noted, all material presented in this publication is licensed under a <u>Creative</u> Commons Attribution—NonCommercial—NoDerivatives 4.0 International licence.

Enquiries about the licence and any use of this publication are welcome and can be sent to communications@safetyandquality.gov.au.

The Commission's preference is that you attribute this publication (and any material sourced from it) using the following citation:

Australian Commission on Safety and Quality in Health Care. CARAlert data update 24: 1 July 2021–31 August 2021. Sydney: ACSQHC; 2021

Disclaimer

The content of this document is published in good faith by the Commission for information purposes. The document is not intended to provide guidance on particular healthcare choices. You should contact your healthcare provider for information or advice on particular healthcare choices.

The Commission does not accept any legal liability for any injury, loss or damage incurred by the use of, or reliance on, this document.

Contents

Data Summary	4
National summary	6
Summary by CAR	9
Acinetobacter baumannii complexEnterobacterales	10
Enterococcus species	17
Pseudomonas aeruginosa	20 21
Appendix	
Data NotesAbout CARAlert	

Data Summary

This report provides an update on data submitted to CARAlert for the reporting period: 1 July 2021 to 31 August 2021, and complements previous analyses of and updates on <u>CARAlert data</u>.

National overview:

- The total number of critical antimicrobial resistances (CARs) reported was down slightly compared to the previous two-month reporting period (n = 191 versus n = 235)
- Just under one-half of the CARs reported were carbapenemase-producing Enterobacterales (CPE) (including those with ribosomal methyltransferase and/or transmissible resistance to colistin) (n = 89, 46.6%), followed by azithromycin non-susceptible (low-level resistance, MIC < 256 mg/L) Neisseria gonorrhoeae (n = 48, 25.1%)
- The total number of CPE (either alone or in combination with other CARs) reported this year, compared with the same period last year, decreased by 4% (n = 430 versus n = 447)
- The number of daptomycin non-susceptible *Staphylococcus aureus* decreased by 31% (n = 35) compared with the previous two-month reporting period (n = 51)
- The majority of CARs, excluding those from *N. gonorrhoeae*, were reported from public hospitals (*n* = 96, 71% where setting known). There were 21 reports from community settings, 13 from private hospitals, and 5 from aged care homes.

Carbapenemase-producing Enterobacterales:

- IMP (58.4%), NDM (28.1%), and OXA-48-like (7.9%) types accounted for 94.4% of all CPE reported during this period
- The total number of CPE decreased (n = 89, down 29%) compared with the previous two-month period. The total number of IMP-types reported decreased (n = 52 versus n = 78; the greatest decrease in reports were from New South Wales (n = 17 versus n = 44), Victoria (n = 3 versus n = 10). There were increased reports from Queensland (n = 24 versus n = 16) and the Australian Capital Territory (n = 4 versus n = 1)
- There was a decrease in the total number of NDM-types (n = 25 versus n = 31, down 19%) compared to the previous two-month period. There was a decrease in the number of reports from Queensland (n = 6 versus n = 3) and South Australia (n = 1 versus n = 6). The number of reports from Victoria increased (n = 10 versus n = 7)
- One KPC-producing Enterobacterales was reported from Victoria
- Excluding CARs for which the setting was unknown, 20.7% (18/87) of CPE were reported from settings other than public hospitals; 6.9% (n = 6), 9.2% (n = 8) and 4.6% (n = 4) respectively from the community, private hospitals, and aged care homes
- Three hospitals had more than two reports of IMP-types; two in New South Wales, and one
 in Queensland. A further five institutions had two notifications of IMP-types (Queensland
 (n = 4), and the Australian Capital Territory (n = 1)
- Two hospitals had more than two reports of NDM-types; one in Victoria, and one in New South Wales.

Salmonella and Shigella species:

- The total number of ceftriaxone non-susceptible Salmonella species reported during this period increased 7-fold compared to the previous two-month reporting period (n = 7 versus n = 1). Reports of non-typhoidal species (all producing AmpC) were from Victoria (n = 3), Queensland (n = 2), and Western Australia (n = 1). One typhoidal species producing both AmpC and ESBL was reported from New South Wales
- Multidrug-resistant *Shigella sonnei* were reported from Victoria (n = 1) and Queensland (n = 1). Both were ceftriaxone susceptible.

Azithromycin non-susceptible (low-level resistance, MIC < 256 mg/L) N. gonorrhoeae:

• The total number of reports of this CAR increased 33% compared with the previous two-month reporting period (n = 48 versus n = 36). Almost all (97%) of the reports were from New South Wales (n = 21, 44%), Victoria (n = 19, 40%), and Western Australia (n = 6, 13%). Queensland was the only other state or territory to report this CAR

 Reports from Victoria increased (n = 19 versus n = 2) compared to the previous two-month reporting period. Fortnightly notifications of gonococcal infections in Victoria from 10 May 2021 to 29 August 2021 were 146, 197, 202, 164, 223, 264, 158, 133.¹

Ceftriaxone non-susceptible or azithromycin non-susceptible (high-level resistance, MIC ≥ 256 mg/L) *N. gonorrhoeae:*

• There were no reports of ceftriaxone non-susceptible *N. gonorrhoeae* or azithromycin non-susceptible *N. gonorrhoeae* (high-level resistance, MIC ≥ 256 mg/L) in this reporting period.

Daptomycin and vancomycin non-susceptible Staphylococcus aureus complex:

- The number of reports of this CAR decreased in New South Wales (n = 5 versus n = 15), Queensland (n = 15 versus n = 23), and Western Australia (n = 6 versus n = 8). compared with the previous two-month reporting period (n = 51)
- There was an increase in the number of reports from Victoria (n = 8) compared to the previous two-month reporting period (n = 1).
- No linezolid non-susceptible or vancomycin non-susceptible *S. aureus* were reported in this period.

Carbapenemase-producing *Acinetobacter baumannii* complex and *Pseudomonas aeruginosa*:

- One carbapenemase-producing A. baumannii complex was reported from New South Wales (OXA-23-like)
- Carbapenemase-producing *P. aeruginosa* reports decreased during this period compared to the previous two-month reporting period (n = 5 versus n = 10, down 50%). Reports were from New South Wales (GES-type, n = 3), Victoria (bla_{NDM-1}, n = 1,), and Western Australia (VIMtype, n = 1).

Linezolid resistant Enterococcus:

• Two linezolid-resistant *Enterococcus faecium* were reported during this period, one from New South Wales and one from the Australian Capital Territory.

Candida auris:

• No cases of Candida auris were reported during this period.

Transmissible colistin resistance (other than that seen in combination with CPE):

• No Enterobacterales with transmissible colistin resistance were reported during this period.

Streptococcus pyogenes with reduced susceptibility to penicillin:

No cases of S. pyogenes with reduced susceptibility to penicillin were reported during this
period.

¹ National Notifiable Diseases Surveillance System. Table of communicable disease notifications reported to the NNDSS by fortnight [Internet]. Canberra: Australian Government Department of Health; 2021 [cited 10 Oct 2021.

National summary

Table 1: Number of critical antimicrobial resistances, by state and territory, 1 July 2021 to 31 August 2021, and 2020

		State or Territory									Bi-mor	nthly	Year to date		
				51	ate or	errito	ry			2021	2021			Year t	o date
Species	Critical resistance		Vic	Qld	SA	WA	Tas	NT	ACT	May- Jun	Jul- Aug	Relative change*	2020	2021	Relative change*
Acinetobacter baumannii complex	Carbapenemase-producing	1	0	0	0	0	0	0	0	2	1	▼ 50.0%	12	8	▼ 33.3%
	Carbapenemase and ribosomal methyltransferase-producing	0	0	0	0	0	0	0	0	0	0	_	9	1	▼ 88.9%
Candida auris	-	0	0	0	0	0	0	0	0	0	0	-	3	1	▼ 66.7%
Enterobacterales	Carbapenemase-producing	28	17	31	1	6	0	1	4	120	88	▼ 26.7%	369	399	▲ 8.1%
	Carbapenemase and ribosomal methyltransferase-producing	0	1	0	0	0	0	0	0	0	1	_	26	9	▼ 65.4%
	Carbapenemase-producing and transmissible resistance to colistin	0	0	0	0	0	0	0	0	6	0	▼ 100%	51	22	▼ 56.9%
	Carbapenemase and RMT-producing and transmissible resistance to colistin	0	0	0	0	0	0	0	0	0	0	-	1	0	▼ 100%
	Ribosomal methyltransferase-producing	0	0	0	0	1	0	0	0	0	1	-	2	7	▲ 250%
	Transmissible resistance to colistin	0	0	0	0	0	0	0	0	0	0	-	2	3	▲ 50%
Enterococcus species	Linezolid resistant	1	0	0	0	0	0	0	1	3	2	▼ 33.3%	13	9	▼ 30.8%
Mycobacterium tuberculosis	Multidrug-resistant – at least rifampicin- and isoniazid-resistant strains	0	0	1	0	0	0	0	0	1	1	_	10	5	▼ 50.0%
Neisseria gonorrhoeae	Azithromycin non-susceptible (LLR, MIC < 256 mg/L)	21	19	2	0	6	0	0	0	36	48	▲ 33.3%	181	194	▲ 7.2%
	Azithromycin non-susceptible (HLR, MIC ≥ 256 mg/L	0	0	0	0	0	0	0	0	0	0	-	1	0	▼ 100%
	Ceftriaxone non-susceptible	0	0	0	0	0	0	0	0	0	0	-	3	0	▼ 100%
	Ceftriaxone non-susceptible and azithromycin non-susceptible	0	0	0	0	0	0	0	0	0	0	_	0	0	

HLR = high-level resistance; LLR = low-level resistance; RMT = ribosomal methyltransferase; - = not applicable

Table 1 (continued)

				c	tata ar	torrito	n.,				Bi-mor	nthly	Year to date		
				3	late of	territo	у			2021	2021			rear to	uate
Species	Critical resistance	NSW	Vic	Qld	SA	WA	Tas	NT	ACT	May- Jun	Jul- Aug	Relative change*	2020	2021	Relative change*
Pseudomonas aeruginosa	Carbapenemase-producing	3	1	0	0	1	0	0	0	8	5	▼ 36.7%	18	47	▲ 161%
	Carbapenemase and ribosomal methyltransferase-producing	0	0	0	0	0	0	0	0	2	0	▼ 100%	1	2	▲ 100%
Salmonella species	Ceftriaxone non-susceptible	1	3	2	0	1	0	0	0	1	7	▲ 600%	25	20	▼ 20.0%
Shigella species	Multidrug-resistant	0	1	1	0	0	0	0	0	5	2	▼ 60.0%	217	23	▼ 89.4%
Staphylococcus aureus complex	Daptomycin non-susceptible	5	8	15	0	6	0	0	0	51	35	▼ 31.4%	134	157	▲ 17.2%
	Daptomycin and vancomycin non-susceptible	0	0	0	1	0	0	0	0	0	0	_	1	0	▼ 100%
	Linezolid non-susceptible	0	0	0	0	0	0	0	0	0	0	-	0	0	-
	Vancomycin non-susceptible	0	0	0	0	0	0	0	0	0	0	_	0	0	-
Streptococcus pyogenes	Penicillin reduced susceptibility	0	0	0	0	0	0	0	0	0	0	-	0	0	-
	Total (reported by 30 September 2021)	104	30	49	11	24	1	1	5	235	191	▼ 18.7%	1,079	907	▼ 15.9%

HLR = high-level resistance; LLR = low-level resistance; MIC = minimum inhibitory concentration; – = not applicable

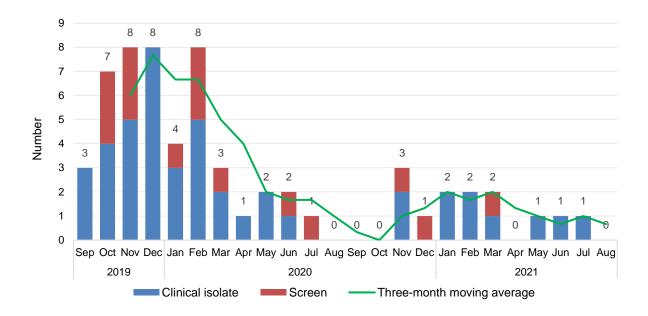
Note: The number of CARs for 2020 has been updated to include additional submissions received after the previous publication date

^{*} Relative change = absolute change between period in 2020 and same period in 2021, for each CAR, expressed as a percentage of 2020 base

Table 2: Number of critical antimicrobial resistance isolates, by setting, national, 1 July 2021 to 31 August 2021

				Setting			
Species	Critical resistance	Public hospital	Private hospital	Aged care home	Community	Unknown	Total
Acinetobacter baumannii complex	Carbapenemase-producing	0	1	0	0	0	1
	Carbapenemase and ribosomal methyltransferase-producing	0	0	0	0	0	0
Candida auris	-	0	0	0	0	0	0
	Carbapenemase-producing	68	8	4	6	2	88
	Carbapenemase and ribosomal methyltransferase-producing	1	0	0	0	0	1
	Carbapenemase-producing and transmissible resistance to colistin	0	0	0	0	0	0
Enterobacterales	Carbapenemase and ribosomal methyltransferase-producing, and transmissible resistance to colistin	0	0	0	0	0	0
	Ribosomal methyltransferase-producing	1	0	0	0	0	1
	Transmissible resistance to colistin	0	0	0	0	0	0
Enterococcus species	Linezolid resistant	2	0	0	0	0	2
Mycobacterium tuberculosis	Multidrug-resistant – at least rifampicinand isoniazid-resistant	0	0	0	1	0	1
	Azithromycin non-susceptible (low-level)	10	0	0	30	8	48
Neisseria	Azithromycin non-susceptible (high-level)	0	0	0	0	0	0
gonorrhoeae	Ceftriaxone non-susceptible	0	0	0	0	0	0
	Ceftriaxone non-susceptible and azithromycin non-susceptible	0	0	0	0	0	0
Pseudomonas aeruginosa	Carbapenemase-producing	3	0	0	2	0	5
	Carbapenemase and ribosomal methyltransferase-producing	0	0	0	0	0	0
Salmonella species	Ceftriaxone non-susceptible	5	1	0	1	0	7
Shigella species	Multidrug-resistant	1	0	0	0	1	2
	Daptomycin non-susceptible	15	3	1	11	5	35
Staphylococcus	Daptomycin and vancomycin non- susceptible	0	0	0	0	0	0
aureus complex	Linezolid non-susceptible	0	0	0	0	0	0
	Vancomycin non-susceptible	0	0	0	0	0	0
Streptococcus pyogenes	Penicillin reduced susceptibility	0	0	0	0	0	0
	Total (reported by 30 September 2021)	106	13	5	51	16	191

^{*} Information on setting for Neisseria gonorrhoeae is often not available


High-level = azithromycin MIC \geq 256 mg/L; Low-level = azithromycin MIC < 256 mg/L

Summary by CAR

Acinetobacter baumannii complex

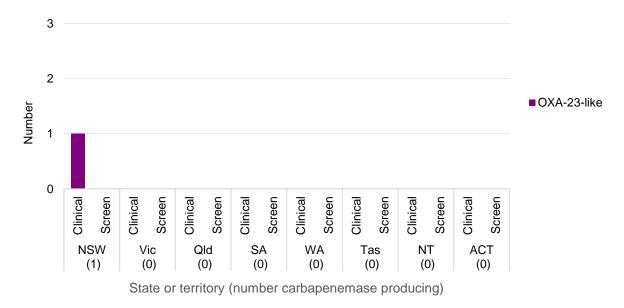
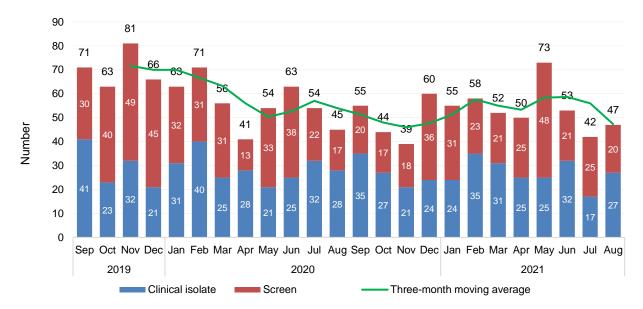

National data

Figure 1: Carbapenemase-producing *Acinetobacter baumannii* complex*, twenty-four-month trend by specimen type, national, 1 September 2019 to 31 August 2021

State and territory data

Figure 2: Carbapenemase-producing *Acinetobacter baumannii* complex, number reported by carbapenemase type and specimen type, by state and territory, 1 July 2021 to 31 August 2021


Table 3: Carbapenemase-producing *Acinetobacter baumannii* complex, number reported by setting, by state and territory, 1 July 2021 to 31 August 2021

		State or territory									
Setting	NSW	Vic	Qld	SA	WA	Tas	NT	ACT	Total		
Total	1	0	0	0	0	0	0	0	1		
Public hospital	0	0	0	0	0	0	0	0	0		
Private hospital	1	0	0	0	0	0	0	0	1		
Aged care home	0	0	0	0	0	0	0	0	0		
Community	0	0	0	0	0	0	0	0	0		
Unknown	0	0	0	0	0	0	0	0	0		

Enterobacterales

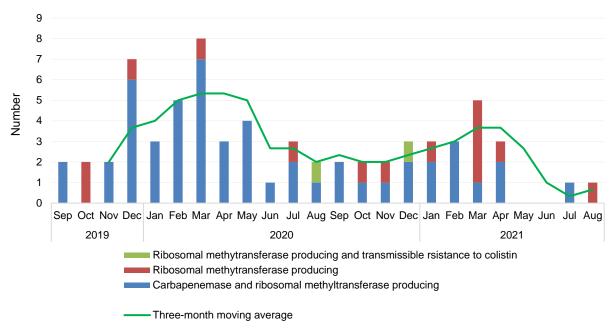

National data

Figure 3: Carbapenemase-producing *Enterobacterales**, twenty-four-month trend by specimen type, national, 1 September 2019 to 31 August 2021

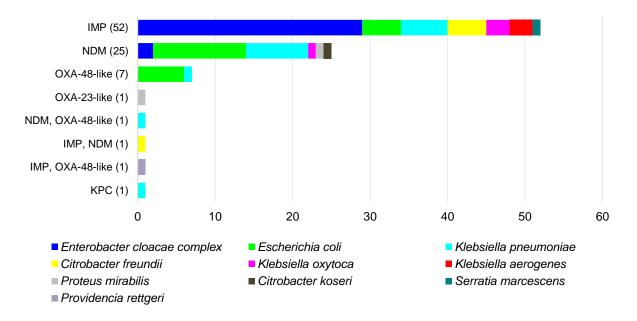
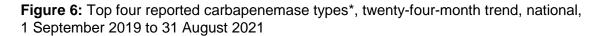

^{*} Carbapenemase-producing alone or in combination with ribosomal methyltransferases

Figure 4: Ribosomal methyltransferase-producing *Enterobacterales**, twenty-four-month trend, national, 1 September 2019 to 31 August 2021



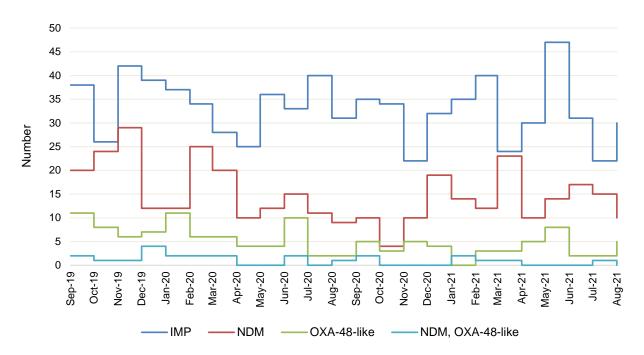
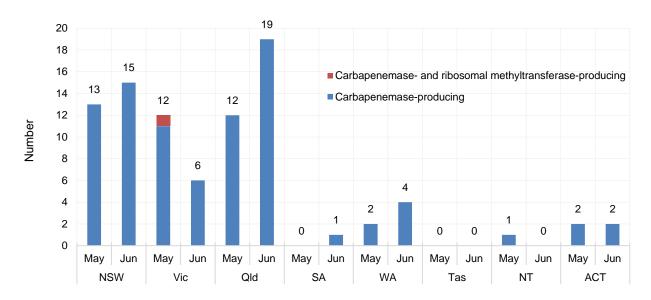

^{*} Ribosomal methyltransferases alone, or in combination with carbapenemase(s)

Figure 5: Carbapenemase-producing *Enterobacterales**, number reported by carbapenemase type and species, national, 1 July 2021 to 31 August 2021

^{*} Carbapenemase-producing (n = 88), carbapenemase and ribosomal methyltransferase-producing (n = 1)

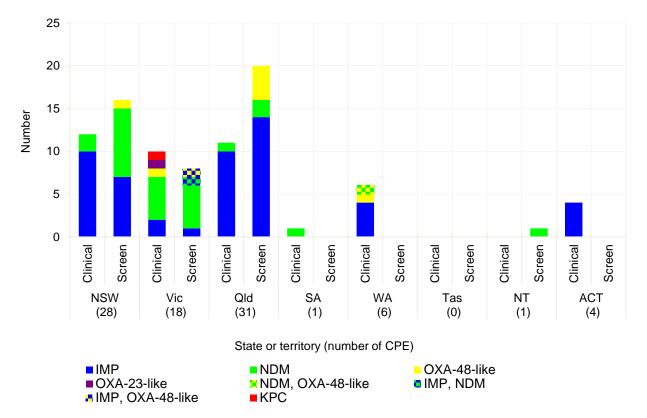


^{*} Alone or in combination with another type for the reporting period indicated

State and territory data

Figure 7: Carbapenemase-producing *Enterobacterales,* number reported by month, state and territory, 1 July 2021 to 31 August 2021

Carbapenemase-producing (n = 88), carbapenemase and ribosomal methyltransferase-producing (n = 1)


Figure 8: Two-year trend for the top four reported carbapenemase types from *Enterobacterales*, by state and territory and nationally, (three-month moving average), 1 September 2019 to 31 August 2021

Туре	NSW	Vic	Qld	SA	WA	Tas	NT	ACT	Australia
IMP	33 MM	12 ~	17 / M	0	2 \	0	1	1	39 V M
	13	0 1	4 V	0	o V W	0	0	0	29 V U *
NDM	8 \ \ \	9 My	3 \ \ \	6 /	1	0	1	0	24 🔨
NDW	2 W	0	0	0 . /~~	0	0	0	0	8
OXA-48-	3 \	7 \	2 \ _ /	1	1	0	0	1	10 📐
like	1 / V \	0	o MM	0	0	0	0	0	2
KPC	1	2 /	0	0	0	0	0	0	2 /
RFC	0	0 1	0	0	0	0	0	0	0
All types	27]/ M	25 ^√\ _	18 1	7 /	4 ////	1	1	2 , 10 1	73
All types	16	1	5	0 /	1	0	0	0 0 1	46

Line graphs represent three-month moving average for the period 1 September 2019 to 31 August 2021, for each type, where maximum monthly average was greater than one.

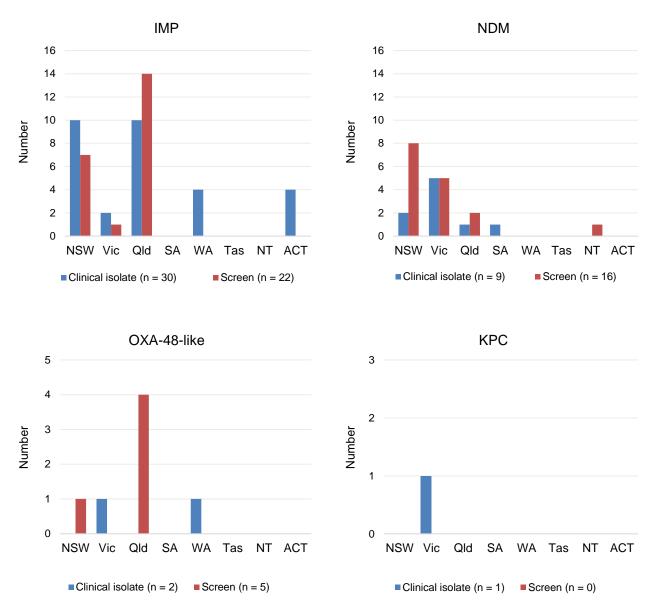

Straight green line in cell = no carbapenemase type for that state or territory during the reporting period Blank cell = maximum monthly average was one or less

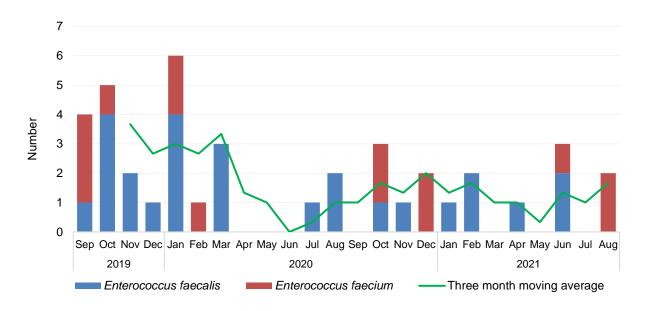
Figure 9: Carbapenemase-producing *Enterobacterales**, number reported by carbapenemase type and specimen type, by state and territory, 1 July 2021 to 31 August 2021

^{*} Carbapenemase-producing (n = 88), carbapenemase and ribosomal methyltransferase-producing (n = 1)

Figure 10: Top four reported carbapenemase-producing *Enterobacterales* types by specimen type, by state and territory, 1 July 2021 to 31 August 2021

Other types: OXA-23-like (n = 1, Vic [clinical]); NDM+OXA-48-like (n = 1, WA [clinical]); IMP+NDM (n = 1, Vic [screen]); IMP+OXA-48-like (n = 1, Vic [screen])

Table 4: Top four carbapenemase types from *Enterobacterales*, number reported by setting, by state and territory, 1 July 2021 to 31 August 2021


Carbananamaaa		State or territory										
Carbapenemase type	Setting	NSW	Vic	Qld	SA	WA	Tas	NT	ACT	Total		
IMP	Total	17	3	24	0	4	0	0	4	52		
	Public hospitals	15	2	16	0	2	0	0	3	38		
	Private hospitals	0	1	4	0	1	0	0	1	7		
	Aged care homes	0	0	3	0	0	0	0	0	3		
	Community	2	0	1	0	1	0	0	0	4		
	Unknown	0	0	0	0	0	0	0	0	0		
NDM	Total	10	10	3	1	0	0	1	0	25		
	Public hospitals	9	8	3	1	0	0	1	0	22		
	Private hospitals	0	1	0	0	0	0	0	0	1		
	Aged care homes	1	0	0	0	0	0	0	0	1		
	Community	0	0	0	0	0	0	0	0	0		
	Unknown	0	1	0	0	0	0	0	0	1		
OXA-48-like	Total	1	1	4	0	1	0	0	0	7		
	Public hospitals	1	0	4	0	0	0	0	0	5		
	Private hospitals	0	0	0	0	0	0	0	0	0		
	Aged care homes	0	0	0	0	0	0	0	0	0		
	Community	0	0	0	0	1	0	0	0	1		
	Unknown	0	1	0	0	0	0	0	0	1		
KPC	Total	0	1	0	0	0	0	0	0	1		
	Public hospitals	0	1	0	0	0	0	0	0	1		
	Private hospitals	0	0	0	0	0	0	0	0	0		
	Aged care homes	0	0	0	0	0	0	0	0	0		
	Community	0	0	0	0	0	0	0	0	0		
	Unknown	0	0	0	0	0	0	0	0	0		

^{*} Top four carbapenemase types account for 96% (85/89) of all carbapenemase-producing *Enterobacterales* reported for this period. Other types were OXA-23-like (n = 1, Vic), NDM+OXA-48-like (n = 1, WA), IMP+NDM (n = 1, Vic) and IMP+OXA-48-like (n = 1, Vic)

Enterococcus species

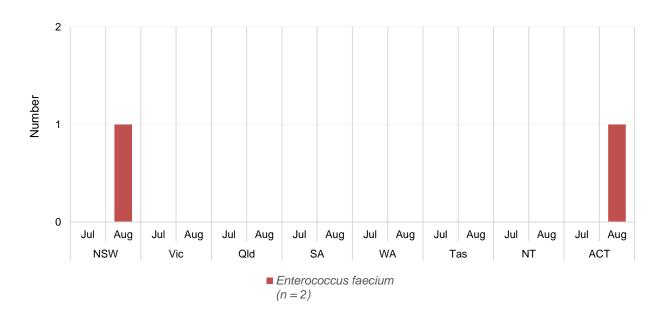

National data

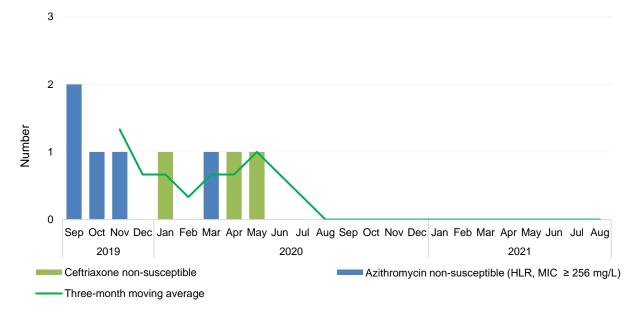
Figure 11: Linezolid non-susceptible *Enterococcus* species, twenty-four-month trend, national, 1 September 2019 to 31 August 2021

State and territory data


Figure 12: Linezolid non-susceptible *Enterococcus* species, number reported by state and territory, 1 July 2021 to 31 August 2021

Mycobacterium tuberculosis

National data


Figure 13: Multidrug-resistant *Mycobacterium tuberculosis*, twenty-four-month trend, national, 1 September 2019 to 31 August 2021

Neisseria gonorrhoeae

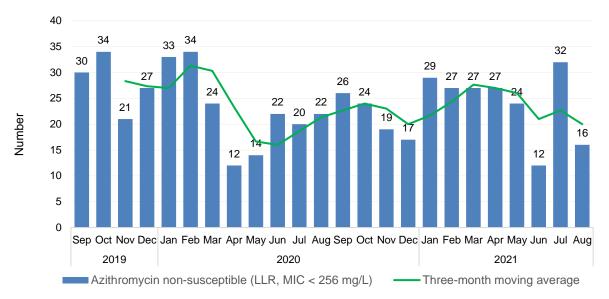
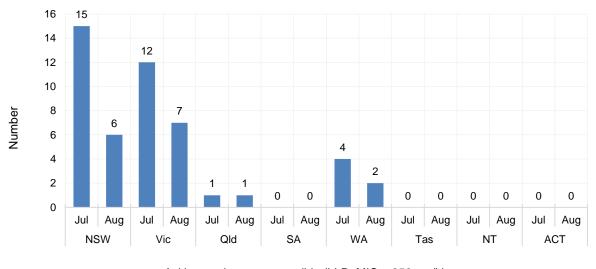

National data

Figure 14: Ceftriaxone non-susceptible and/or azithromycin non-susceptible (HLR, MIC ≥ 256 mg/L) *Neisseria gonorrhoeae,* number reported by month, national, 1 September 2019 to 31 August 2021

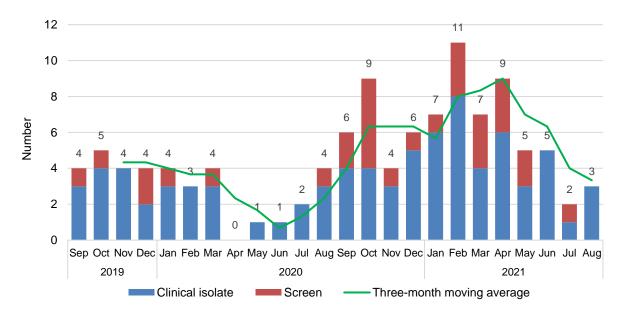
HLR: High level resistance; MIC = minimum inhibitory concentration


Figure 15: Azithromycin non-susceptible (LLR, MIC < 256 mg/L) *Neisseria gonorrhoeae*, twenty-four-month trend, national, 1 September 2019 to 31 August 2021

LLR: Low level resistance; MIC = minimum inhibitory concentration

State and territory data

Figure 16: Azithromycin non-susceptible (LLR, MIC < 256 mg/L) *Neisseria gonorrhoeae,* number reported by month, state and territory, 1 July 2021 to 31 August 2021


Azithromycin non-susceptible (LLR, MIC < 256 mg/L)

LLR: Low level resistance; MIC = minimum inhibitory concentration

Pseudomonas aeruginosa

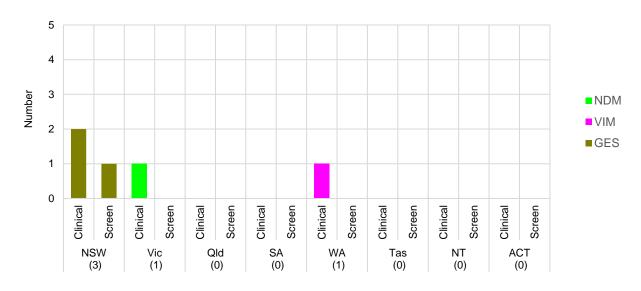
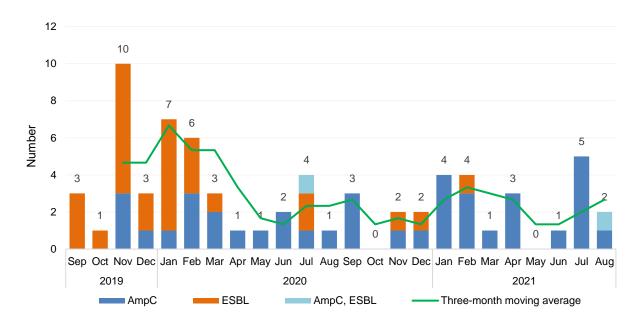

National data

Figure 17: Carbapenemase-producing *Pseudomonas aeruginosa**, twenty-four-month trend by specimen type, national, 1 September 2019 to 31 August 2021

State and territory data

Figure 18: Carbapenemase-producing *Pseudomonas aeruginosa*, number reported by carbapenemase type and specimen type, by state and territory, 1 July 2021 to 31 August 2021

State or territory (number carbapenemase-producing)

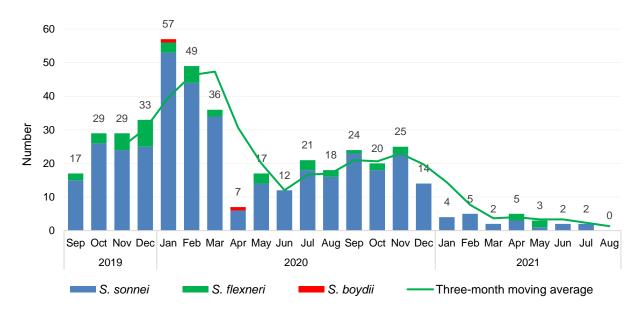

Table 5: Carbapenemase-producing *Pseudomonas aeruginosa*, number reported by setting, by state and territory, 1 July 2021 to 31 August 2021

		State or territory									
Setting	NSW	Vic	Qld	SA	WA	Tas	NT	ACT	Total		
Total	3	1	0	0	1	0	0	0	5		
Public hospital	2	0	0	0	1	0	0	0	3		
Private hospital	0	0	0	0	0	0	0	0	0		
Aged care home	0	0	0	0	0	0	0	0	0		
Community	1	1	0	0	0	0	0	0	2		
Unknown	0	0	0	0	0	0	0	0	0		

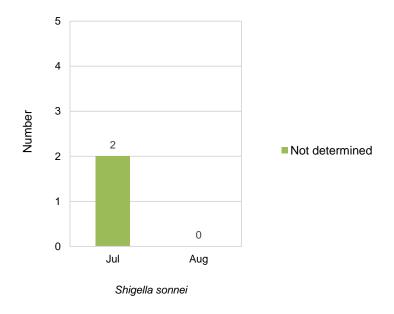
Salmonella species

National data

Figure 19: Ceftriaxone non-susceptible *Salmonella* species, twenty-four-month trend, national, 1 September 2019 to 31 August 2021

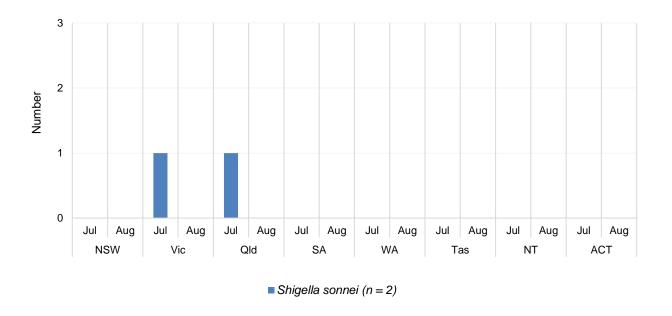

Note: (1 July 2021—31 August 2021)

1. Non-typhoidal Salmonella species (n = 6) and typhoidal Salmonella species (n = 1)


Shigella species

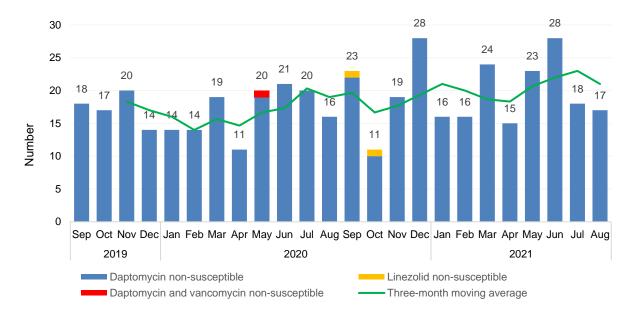
National data

Figure 20: Multidrug-resistant *Shigella* species, twenty-four-month trend, national, 1 September 2019 to 31 August 2021


Figure 21: Multidrug-resistant *Shigella* species, number reported by month, national, 1 July 2021 to 31 August 2021

Not determined = multidrug resistant, ceftriaxone susceptible

State and territory data


Figure 22: Multidrug-resistant *Shigella* species, number reported by state and territory, 1 July 2021 to 31 August 2021

Staphylococcus aureus

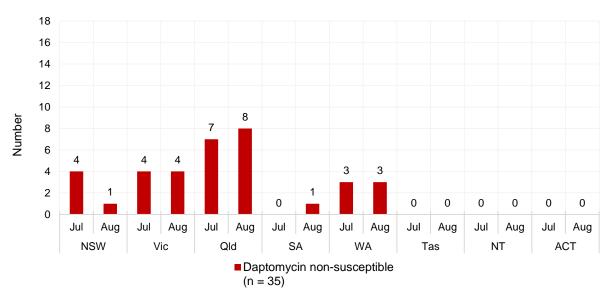

National data

Figure 23: Daptomycin, linezolid or vancomycin non-susceptible *Staphylococcus aureus*, twenty-four-month trend, national, 1 September 2019 to 31 August 2021

State and territory data

Figure 24: Daptomycin, linezolid or vancomycin non-susceptible *Staphylococcus aureus*, number reported by month, state and territory, 1 July 2021 to 31 August 2021

Note: No linezolid non-susceptible or vancomycin non-susceptible S. aureus were reported during this period.

Table 6: Daptomycin non-susceptible *Staphylococcus aureus*, number reported by setting and state and territory, 1 July 2021 to 31 August 2021

	State or territory												
Setting	NSW	Vic	Qld	SA	WA	Tas	NT	ACT	Total				
Total	5	8	15	1	6	0	0	0	35				
Public hospital	3	4	1	1	6	0	0	0	15				
Private hospital	0	0	3	0	0	0	0	0	3				
Aged care home	0	0	1	0	0	0	0	0	1				
Community	1	0	10	0	0	0	0	0	11				
Unknown	1	4	0	0	0	0	0	0	5				

Appendix

Data Notes

The following are important considerations for interpreting CARAlert data:

- 1. The data are based on the date that the isolate with the confirmed CAR was collected.
- 2. States and territories refer to the state or territory where the CAR was detected. If place of residence is unknown or overseas, the state or territory of the originating laboratory is reported.
- 3. Comparison between reports may be influenced by delayed detection or late submissions of CARs.
- 4. Number of CARs reported does not always equal the number of patients, as patients may have more than one CAR, or species, detected in a specimen.
- 5. Cut-off date for data that are included in updates and reports is four weeks after the end of each reporting period.
- 6. National summary data is provided; comparison across states and territories is provided for organisms where there are large numbers reported and a comparison is meaningful.
- 7. Authorised officers in each state and territory health department can access the CARAlert web portal directly for further information about their jurisdiction, including the name of the public hospital where a patient with a confirmed CAR was cared for, and to extract reports on their data.

About CARAIert

CARAlert is a component of the Antimicrobial Use and Resistance in Australia (AURA) Surveillance System. CARAlert was established by the Australian Commission on Safety and Quality in Health Care in March 2016.

The AURA Surveillance System provides essential information to develop and implement strategies to prevent and contain antimicrobial resistance in human health and improve antimicrobial use across the acute and community healthcare settings. AURA also supports the National Safety and Quality Health Service (NSQHS) Standard Preventing and Controlling Healthcare-Associated Infection and Australia's National Antimicrobial Resistance Strategy (2015–2019). Funding for AURA is provided by the Australian Government Department of Health and state and territory health departments.

Critical antimicrobial resistances (CARs) are resistance mechanisms known to be a serious threat to the effectiveness of last-line antimicrobial agents. CARs can result in significant morbidity and mortality.

The CARs reported under CARAlert are listed in Table A1. The CARs were drawn from the list of high-priority organisms and antimicrobials which are the focus of the AURA Surveillance System.²

Table A1: List of critical antimicrobial resistances reported to CARAlert

Species	Critical resistance
Acinetobacter baumannii complex	Carbapenemase-producing
Candida auris	-
Enterobacterales	Carbapenemase-producing, and/or ribosomal methyltransferase-producing
Enterobacterales	Transmissible colistin resistance
Enterococcus species	Linezolid resistant
Mycobacterium tuberculosis	Multidrug-resistant – resistant to at least rifampicin and isoniazid
Neisseria gonorrhoeae	Ceftriaxone non-susceptible or azithromycin non-susceptible
Salmonella species	Ceftriaxone non-susceptible
Shigella species	Multidrug-resistant
Staphylococcus aureus complex*	Vancomycin, linezolid or daptomycin non-susceptible
Streptococcus pyogenes	Penicillin reduced susceptibility
Pseudomonas aeruginosa	Carbapenemase-producing

^{*} For CARAlert, S. aureus complex includes S. aureus, S. argenteus and S. schweitzeri

The CARAlert system is based on the following routine processes used by pathology laboratories for identifying and confirming potential CARs:

- 1. Collection and routine testing the isolate is collected from the patient and sent to the originating laboratory for routine testing
- 2. Confirmation if the originating laboratory suspects that the isolate is a CAR, it sends the isolate to a confirming laboratory that has the capacity to confirm the CAR
- 3. Submission to the CARAlert system the confirming laboratory advises the originating laboratory of the result of the test, and the originating laboratory reports back to the health service that cared for the patient from whom the specimen was collected; the confirming laboratory then submits the details of the resistance and organism into the secure CARAlert web portal.

CARAlert data update: 1 July 2021-31 August 2021

² Australian Commission on Safety and Quality in Health Care (ACSQHC). AURA 2019: Third Australian report on antimicrobial use and resistance in human health. Sydney: ACSQHC; 2019.

AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE

Level 5, 255 Elizabeth Street, Sydney NSW 2000 GPO Box 5480, Sydney NSW 2001

Phone: (02) 9126 3600

Email: <u>mail@safetyandquality.gov.au</u>

Website: www.safetyandquality.gov.au