Australian Clinical Quality Registries Project

Final Report

16 February 2010

in partnership with...
5.2.5.7 SUPPLY CHAIN ... 25
5.2.5.8 ENGAGEMENT AND ADOPTION ... 25
5.2.6 RECOMMENDED CHANGES TO THE TECHNICAL STANDARDS 25
6. FINAL INDIVIDUAL STATUS REPORTS FOR EACH PILOT REGISTRY ... 28
6.1 AUSTRALIAN CARDIAC PROCEDURES REGISTRY (ACPR) 29
6.1.1 KEY OUTCOMES AND ISSUES FOR THE ACPR 29
6.1.2 OVERALL COMMENTS .. 30
6.2 AUSTRALIAN STROKE CLINICAL REGISTRY (AUSCR) 31
6.2.1 KEY OUTCOMES AND ISSUES FOR THE AUSCR 31
6.2.2 OVERALL COMMENT .. 32
6.3 BI-NATIONAL BURNS REGISTRY (BINBR) 33
6.3.1 KEY OUTCOMES AND ISSUES FOR THE BINBR 33
6.3.2 OVERALL COMMENT .. 34
6.4 NATIONAL BREAST CANCER AUDIT (NBCA) 35
6.4.1 KEY OUTCOMES AND ISSUES FOR THE NBCA 35
6.4.2 OVERALL COMMENT .. 36
6.5 NECK OF FEMUR FRACTURE REGISTRY OF AUSTRALIA (NOFFRA) 37
6.5.1 KEY OUTCOMES AND ISSUES FOR THE NOFFRA 37
6.5.2 OVERALL COMMENTS .. 38
6.6 KEY OUTCOMES AND ISSUES FOR THE AROC 39
6.6.2 OVERALL COMMENT .. 40
7. CONCLUSIONS AND RECOMMENDATIONS FROM THE EVALUATION 41
ATTACHMENT A – DRAFT OPERATING PRINCIPLES AND TECHNICAL STANDARDS FOR AUSTRALIAN CLINICAL QUALITY REGISTRIES ... 48
ATTACHMENT B – COMPLETED SUMMATIVE EVALUATION FRAMEWORK FOR THE AUSTRALIAN CLINICAL QUALITY REGISTRIES PROJECT ... 49
1. Executive summary

1.1 The Australian Clinical Quality Registry project

The Australian Clinical Quality Registry Project (the project) was funded and managed by the Australian Commission on Safety and Quality in Health Care (the Commission) over the period October 2008 to December 2009. The project is an important component of the Commission’s Information Strategy for improving the safety and quality of health care through the use of health care information.

Six clinical quality registry pilots were funded in October 2008 to test and validate draft *Operating Principles and Technical Standards* developed by the Commission in collaboration with the NHMRC Centre for Research Excellence in Patient Safety (CREPS) at Monash University and the National E-Health Transition Authority (NEHTA). The pilot registries were:

- Australian Cardiac Procedures Registry (ACPR)
- Australian Stroke Clinical Registry (AuSCR)
- Bi-national Burns Registry (BiNBR)
- National Breast Cancer Audit (NBCA)
- Neck of Femur Fracture Registry of Australia (NOffRA)
- Australian Rehabilitation Outcomes Centre (AROC)

1.2 Evaluation of the Australian Clinical Quality Registry project

Grosvenor Management Consulting was engaged by the Commission in November 2008 to evaluate the Australian Clinical Quality Registry project. The evaluation ran alongside the work of pilot registries in testing and validating the draft *Operating Principles and Technical Standards* using baseline, formative and summative evaluation approaches. Reports on the final outcomes of each of the pilot registries are in section 6 of this report.

The evaluation of the Australian Clinical Quality Registry Project involved three phases:

Phase 1: Establishment phase of the clinical quality pilot registries (December 2008 to January 2009) – baseline evaluation

Phase 2: Implementation phase of the clinical quality pilot registries (February to October 2009) – formative evaluation

Phase 3: Evaluating the outcomes of the clinical quality pilot registries (November to Dec 2009) - summative evaluation

This summative evaluation report:

- draws together the lessons learned to determine the final outcomes of the pilot registries in testing and validating the draft *Operating Principles and Technical Standards*
- assesses the efficacy, feasibility and indicative cost effectiveness of the standards
• assesses the major issues and barriers to implementing the draft *Operating Principles and Technical Standards* at the completion of the project, and

• makes recommendations that aim to maximise the benefit and knowledge gained from the project to enable decisions to be made on the final principles and standards to be adopted for clinical quality registries.

1.3 Conclusions and recommendations

Note: The findings of the evaluation on which these conclusions and recommendations are based are detailed in sections 4, 5 & 6. The following conclusions and recommendations are repeated in full in section 7.

Conclusion 1: The evaluation of the Australian Clinical Quality Registry project demonstrated overall that the project was highly successful in testing and validating the draft *Operating Principles and Technical Standards* for clinical quality registries.

The six pilot registries funded by the Commission valued and benefited from testing and validating the draft *Operating Principles and Technical Standards*. Through their involvement in the project the pilot registries provided a number of soundly based insights into the potential operation of a registry whose principal purpose is to improve the safety and quality of clinical care. The project also confirmed a key role for clinical quality registries in driving clinical quality improvement in the Australian health care system.

The evaluation of the progress and outcomes of the project strongly supports the importance of adopting *Operating Principles and Technical Standards* to guide existing or establish new clinical quality registries.

The final *Operating Principles and Technical Standards* developed through the project will require national endorsement and ownership by Australian Health Ministers to provide the necessary ongoing authority for their adoption and uptake to drive clinical quality improvement across the Australian health system.

The Commission is highly respected and well placed to provide overarching national leadership and governance required to develop a national approach to clinical quality registries based on the final *Operating Principles and Technical Standards* agreed through this project.

Recommendation 1: The Commission build upon the successful outcomes of the Australian Clinical Quality Registry project to further advance and provide national leadership for the establishment and maintenance of clinical quality registries to drive clinical quality improvement in the Australian health care system.

Conclusion 2: The key attribute of a clinical quality registry is to use the information it collects and reports on for the purpose of improving the safety or quality of health care.

The draft *Operating Principles and Technical Standards* defines a clinical quality registry “as a particular subset of clinical registers”.

It also states: “The purpose of a clinical quality register is to improve the safety or quality of health care provided to patients by collecting key clinical information from individual healthcare encounters which enable risk-adjusted outcomes to be used to drive quality improvement”.

The distinction between a clinical quality registry and other types of registries is important to know and understand. The key attributes of a clinical quality registry are articulated in the first seven *Operating Principles*.
Operating Principle 1 (OP1) concerning the need for clinical quality registries to have clear and precisely defined purposes related to safety and quality (as we recommend below) is fundamental to a registry being equipped to operate as a clinical quality registry, as opposed to a registry primarily used for the purpose of research or clinical audit. Achievement of this attribute is also contingent on compliance with other closely related Operating Principles and associated Technical Standards.

In this regard, compliance with OP1 should be seen as pivotal to qualifying as a clinical quality registry for governance and/or funding purposes.

Recommendation 2: The requirements for being a clinical quality registry need to be made explicit in the final Operating Principles and Technical Standards documentation. OP1 in particular needs to state purposes directed at improving the quality or safety of patient care. Compliance with OP1 should be a mandatory requirement for a clinical quality registry.

Conclusion 3: A number of issues and barriers identified by the pilot registries during the project have impacted on their ability to fully implement, test and validate the draft Operating Principles and Technical Standards.

The issues and barriers most frequently mentioned during the project include:

- timeframes too short to establish the pilot registry and to fully test and validate the draft Operating Principles and Technical Standards
- project scope and funding of the pilot registries
- ethics and ethics approval processes problematic and slow
- difficulties in establishing governance arrangements to ensure effective clinical and technical buy-in to the operation of the registry as a clinical quality registry
- technical complexity of the standards and capability of the registry teams to test and validate the draft Operating Principles and Technical Standards
- local institutional IT requirements and cost implications in implementing technically complex IT systems, eg for interoperability

Not all of the above barriers will continue beyond the conclusion of the project. However, specific issues in relation to ethics approval processes, governance and clinical leadership, ongoing resourcing of clinical quality registries, and national IT infrastructure and technical capability are likely to be ongoing issues and barriers to the establishment and maintenance of clinical quality registries.

Recommendation 3: The Commission consider how to strengthen support for clinical quality registries in relation to ethics approvals based on opt-out consent; national governance to support clinical leadership; on-going resourcing; and IT infrastructure and capability to ensure future clinical quality registries can fulfil their purpose in improving the safety and/or quality of health care.

Conclusion 4: The majority of Operating Principles were supported by the pilot registries, albeit with some qualifications in relation to certain health conditions and interventions. Support for the Technical Standards was less straightforward.

By the end of the project, the pilot registries overall had reported comprehensively about the Operating Principles, indicating support for, or compliance with, the majority of the principles. Support for the Technical Standards was less straightforward due to their perceived complexity, but also lack of technical capability in the majority of the pilot registry teams.
In particular, the technical standards were viewed as either too complex, difficult to understand and/or too ‘blue sky’. Others however indicated that the suggested standards were useful, even though some present ‘green fields’ standards around which associated developments and/or industry experience is lacking or still emerging.

Pilot registries expressed the view that the draft *Operating Principles and Technical Standards* document and Standards Map did not provide a clear ‘road-map’ for registry managers to choose the standards most suitable for their registry, compounding further the difficulties they had experienced in understanding the technical information within the standards.

Despite these differing opinions, collectively the lessons learned from the pilot registries have been substantial and provide a firm foundation for recommending the scope and form of the final *Operating Principles and Technical Standards* to be adopted for clinical quality registries.

Recommendation 4: The final *Operating Principles and Technical Standards* to be adopted should confirm the core principles for a clinical quality registry as well as clarify the relationship of operating principles to related technical standards. The latter would be best achieved through separation of the final *Operating Principles and Technical Standards* document into stand alone, but adequately referenced, documents.

Conclusion 5: Overall the adoption of all of the recommended technical standards provided in the Standards Map was limited, with the majority of pilot registries only testing and validating up to Level 2 in the NEHTA architecture.

The perceived complexity of the *Technical Standards*, and the need to access high level technical support during the project, did impact on the extent to which the pilot registries were able to test all the standards, especially those required at higher levels within the NEHTA architecture.

By virtue of this, the ability for the evaluation to fully assess the efficacy, feasibility and indicative cost effectiveness of all the technical standards recommended in the standards map was also limited.

Recommendation 5: The Commission consider how the final *Operating Principles and Technical Standards* could provide clearer guidance and explanations about the required technical aspects of establishing a clinical quality registry to assist future registries to adopt, test and validate standards, including for NEHTA Level 3 and above.

Conclusion 6: Given the range of views of the pilot registries in relation to the NEHTA architecture, constraints in existing IT environments and the general perception of a need for strong IT support in relation to the technical standards, a case has emerged that new clinical quality registries will require access to external IT expertise and guidance to fulfil the expectations of NEHTA level 3 and above. The substantive reasons given by the majority of the pilot registries for limited adoption, testing and validation of the technical standards recommended in the Standards Map, related largely to:

- local institutional IT requirements, and
- the cost implications to the registry in implementing new and/or more technically complex IT systems across contributing sites to achieve higher levels within the NEHTA architecture.

All but one of the pilot registries see the achievement of NEHTA Level 3 or above as not feasible in the short to medium term. The readiness or lack thereof of the
Australian health system for higher level interoperability was challenged by all of the pilot registries. They believed there are few health facilities with the technical knowledge or capacity to cooperate with a NEHTA level 4 registry.

Generally the registries see the NEHTA architecture as too futuristic against the existing broader health IT environment, with diversity of IT information systems that are not conducive to achieving interoperability.

Recommendation 6: The Commission consider the feasibility of providing, or engendering support for, external IT expertise and guidance to clinical quality registries to fulfil the expectations of NEHTA level 3 and above.

Conclusion 7: Changes to the draft *Operating Principles and Technical Standards* documentation will provide the necessary guidance for new or existing registries to operate effectively and thereby enable health care processes/pathways and patient outcomes to be measured and used to improve the safety and quality of health care.

The evaluation of the outcomes of the project in relation to testing and validating the draft *Operating Principles and Technical Standards* for clinical quality registries suggests that the current version of the draft *Operating Principles and Technical Standards* document has not necessarily assisted the pilot registries to adopt, test and validate the principles and standards uniformly and consistently.

The recommended changes to the draft *Operating Principles and Technical Standards* made by the pilot registries have been assessed and documented in section 5 and Attachment B of this report in light of their justification for a particular change. If in our view the change did not strengthen a registry in relation to OP1 in particular, or was too or not prescriptive enough, we have made alternative suggestions to ensure internal consistency in the final *Operating Principles and Technical Standards*. The detailed recommended changes in relation to the final *Operating Principles and Technical Standards* document are provided in Section 5 and Attachment B.

Recommendation 7: The Commission consider the proposed changes to the draft *Operating Principles and Technical Standards* documentation based on the evaluation of the outcomes of the pilot registries in testing and validating the principles and standards during the project. These are detailed in section 5 and 7 of this report.
2. Introduction

2.1 Draft Operating Principles and Technical Standards for Australian Clinical Quality Registries

The draft *Operating Principles and Technical Standards* for Australian Clinical Quality Registries was developed by the Commission in collaboration with the NHMRC Centre for Research Excellence in Patient Safety (CREPS) at Monash University and the National E-Health Transition Authority (NEHTA).

This document provided the context for understanding what a clinical quality registry is intended to achieve through the adoption of the proposed draft *Operating Principles and Technical Standards* for clinical quality registries.

It provided context for the pilot registries to test and validate the principles and standards relevant to a clinical quality registry at different levels within the NEHTA architecture. The version used for the purpose of the project is at Attachment A.

2.2 What is a clinical quality registry?

The draft *Operating Principles and Technical Standards* provides an overview of the purpose and role of a clinical quality registry:

An Australian Clinical Quality Registry is a registry whose purpose is to improve the safety or quality of health care provided to patients by collecting key clinical information from individual healthcare encounters which enable risk-adjusted outcomes to be used to drive quality improvement.

Australian clinical quality registries build on data collected from events in daily health care and use this information to assess care provision and implement quality improvements, where required.

Clinical quality registers are a particular subset of clinical registers that systematically collect health-related information on individuals who are:

- treated with a particular surgical procedure, device or drug, e.g. joint replacement;
- diagnosed with a particular illness, e.g. stroke; or
- managed via a specific healthcare resource, e.g. treated in an intensive care unit.

Clinical quality registers should be focused on conditions and procedures where outcomes are thought to vary and where improvements in quality have the greatest capacity to improve quality of life and/or reduce costs. (Page 1-2)

The draft *Operating Principles and Technical Standards* for Australian Clinical Quality Registries document provides other contextual information for stakeholders contemplating the development of new Australian Clinical Quality Registries.
2.3 The Australian Clinical Quality Registries project

The Australian Clinical Quality Registries project is part of the Australian Commission on Safety and Quality in Health Care’s Information Strategy (http://www.safetyandquality.gov.au).

Six clinical quality registry pilots were funded by the Commission in October 2008 to test and validate the draft Operating Principles and Technical Standards as part of the project.

2.4 Evaluation of the Australian Clinical Quality Registry project

Grosvenor Management Consulting was engaged by the Australian Commission for Safety and Quality in Health Care (ACSQHC) to evaluate the Australian Clinical Quality Registries project.

Susan Garner (Grosvenor Management Consulting) and Geoff Sims (Geoff Sims Consulting), with expert advisory support from Professor Michael Frommer (Sydney Health Projects Group, University of Sydney), provided independent evaluation advice to the Commission for the project.

The evaluation ran alongside the work of pilot registries in testing and validating the draft Operating Principles and Technical Standards using baseline, formative and summative evaluation approaches.

The evaluation demonstrated the diversity of approaches adopted by each pilot in establishing their registry against the draft Operating Principles and Technical Standards. While there are many differences between the pilot registries, the evaluation found many common views and experiences in establishing a clinical quality registry.

This approach to the evaluation enabled the independent evaluation team to observe and evaluate the processes adopted by each of the pilot registries over the timeframes for the project overall. The Commission’s support for this approach represents ‘best–practice’ in evaluation providing a means of tracking change over time, as well as assessing the final outcomes of the project overall.

2.6 Structure of this report

The final evaluation report is structured as follows:

Section 1 – Executive summary

Section 2 – Introduction

Section 3 – Evaluation methodology

Section 4 – Issues and barriers in testing the validating the draft Operating Principles and Technical Standards for clinical quality registries

Section 5 - Final outcomes in testing the validating the draft Operating Principles and Technical Standards for clinical quality registries – Summative evaluation framework at Attachment B

Section 6 – Individual status reports for the pilot registries

Section 7 – Conclusions and recommendations
Attachment A – draft *Operating Principles and Technical Standards* for Australian Clinical Quality Registries

Attachment B – Summative Evaluation Framework for the Australian Clinical Quality Registries project
3. Evaluation methodology

3.1 Terms of reference for the evaluation

The terms of reference for the evaluation of the Australian Clinical Quality Registries project were to:

- report on the progress and outcomes of testing and validating of the draft Operating Principles and Technical Standards for Australian clinical quality registries, in particular, the efficacy of the standards in promoting quality operation of the registries, by pilot registry sites
- assess the feasibility and indicative cost effectiveness of the standards
- identify any issues or barriers relating to the draft Operating Principles and Technical Standards for Australian Clinical Quality Registries which would limit uptake by registries, and
- provide recommendations that promote best practise and optimal information for Government and other key stakeholders to make decisions on the final principles and standards to be adopted.

3.2 Phases of the evaluation

The evaluation methodology comprises three phases:

Phase 1: Establishment phase of the clinical quality pilot registries (December 2008 to January 2009)

For Phase 1 we conducted an initial assessment of the project at baseline which included a review of all project proposals and monthly reports submitted by the pilot registries to January 2009. We also conducted site visits to inform a baseline report on the status of each pilot registry against the draft Operating Principles and Technical Standards.

Phase 2: Implementation phase of the clinical quality pilot registries (February to October 2009)

For Phase 2, we have adopted a formative or process evaluation approach to monitor the progress of each site on an ongoing basis. This involved assessment of the monthly and progress reports, and site visits to each of the pilot registries at mid-term. The purpose of the June site visits was to discuss:

- issues and barriers in implementing the draft Operating Principles and Technical Standards
- understanding and insights into the testing and validation of the technical standards, in particular.

The mid-term report included our observations from all of the previous reports to the Commission and the June site visits.

Phase 2 also involved:

- continued monitoring through to October 2009
- a multi-site pilot workshop on 1 October 2009, facilitated by Professor Michael Frommer, exploring the common issues, barriers, enablers and overall
outcomes of the pilot registries in testing and validating the draft Operating Principles and Technical Standards

- a progress report on the above.

Phase 3: Evaluating the outcomes of the clinical quality pilot registries (November to Dec 2009)

This phase adopted a summative approach to the evaluation to draw together our understanding of the outcomes over time and leading up to the final outcomes of the clinical quality pilot registries, thereby fully addressing the terms of reference for the evaluation mentioned above.

The final summative evaluation report completes the evaluation of the project. Attachment B to section 5 provides a detailed analysis of the outcomes of the project.

3.3 Key risks for the project

When we reported to the Commission in February and June 2009 we identified a number of potential risks for the project. Our impression in the early stages of the project was that the pilot registries exhibited different levels of risk. This provided a useful way to monitor progress with the establishment of each registry against the draft Operating Principles and Technical Standards over time.

The key risks identified at baseline for the Australian Clinical Quality Registries project were:

1. Registries fail to articulate a clear purpose and / or their purpose does not align with the Commission's purpose of best practice for a clinical quality registry

2. Registries lose sight of, or fail to properly adopt processes for testing and validating the draft Operating Principles and Technical Standards within the timeframes for their pilot registry

3. Registries fail to gain the required ethics approvals; the approvals are delayed to an extent that subsequent project milestones are also delayed; or what is approved impacts upon the coverage that can be achieved within the registry

4. Registries adopt ascertainment strategies that fail to achieve the coverage of eligible cases that is required for a comprehensive assessment of quality of care

5. The data identified for collection by the registry fail to adhere to current national standards or reflect epidemiologically sound evidence of clinically effective care

6. The outputs of the registries fail to influence clinical practice or the reporting is not timely to influence clinical decision making processes

7. Personnel employed within the registries do not have sufficient capability or expertise to assess all aspects of the draft Operating Principles and Technical Standards or they have insufficient technical support to adequately assess them

8. Governance arrangements for the project do not adequately support the achievement of the objectives of the registry in testing and validating the draft Operating Principles and Technical Standards. This could be
demonstrated by lack of clinical by-in for using the reported data provided by the registries for changing practice and driving clinical improvement

9. The registries fail to establish the data linkages to fully assess quality of care and patient outcomes especially where continuity of care across health sectors is important for achieving longer term clinical quality outcomes e.g. where overall outcomes rely on subsequent rehabilitation.

10. Pilot registries are unable to achieve NEHTA level 3 architecture or above against the draft Operating Principles and Technical Standards because of the current state of diversity and lack of interoperability of electronic medical record systems in hospitals and other health care settings.

Given the differences between the pilot registries, their aims, history, level of development and maturity, experience of key personnel, existing governance structures and the IT environment in which the registry is being established, the above risks obviously varied between each pilot registry.

While each pilot was aiming to be, or become, a clinical quality registry through compliance with the draft Operating Principles and Technical Standards, we observed different attitudes and acceptance of the guidance provided by the draft Operating Principles and Technical Standards by the pilot registries. This was reflected in the reports to the Commission throughout the project, and for some pilot registries in some key areas of their final reports.

Notwithstanding the diversity in risk profile, many of the risks identified at baseline had changed at mid-term and / or had been satisfactorily addressed by the end of the project. Some risks for the pilot registries remain as they move toward a roll out to national registries, or including more participating institutions.

Importantly, monitoring of progress of each pilot registry throughout the evaluation enabled the evaluation team to assess the issues and barriers facing each pilot, as well as observe the common themes across the project as a whole. These are discussed in the following section of the report.
4. **Issues and barriers in adopting the draft *Operating Principles and Technical Standards***

A number of the issues and barriers identified by the pilot registries at the initial stages of the project continued to be raised throughout the project. Not all issues and barriers were experienced by all registries, or to the same degree. A number of issues and barriers identified impacted on the ability of the pilot registries to fully implement, test and validate the draft *Operating Principles and Technical Standards* within their pilot registries, within the timeframes of the project.

The issues and barriers discussed below are those most commonly raised by pilot registries. They are also documented in relation to the evaluation of the final outcomes of testing and validating the draft *Operating Principles and Technical Standards* in the following section of the report, and in the Summative Evaluation Framework at Attachment B.

4.1 Project timeframes

Many of the pilot registries considered that a one year timeframe to establish a registry and to fully test and validate the draft *Operating Principles and Technical Standards* was too short.

Despite that, the new, larger and more complex registries made substantial progress in establishing their registry, testing and validating the *Operating Principles and Technical Standards* and meeting their contractual arrangement with the Commission for the project. A number suggested an 18 month timeframe to fully test and validate the *Operating Principles and Technical Standards* would have been preferable.

As a result a number of registries commented in their final reports that some of the *Operating Principles and Technical Standards* were not fully tested and validated during the project, especially those related to outputs and higher level technical standards. This consequently stymied their ability to recommend valid changes to the *Operating Principles and Technical Standards* in their final reports. These are noted in section 5 and Summative Evaluation Framework at Attachment B.

4.2 Project scope and funding

Project costs for some pilot registries were greater than originally thought, leading to the need to draw upon additional funds from elsewhere to support the project.

In addition, some of the larger pilot registries narrowed their original scope in terms of the number of participating institutions to enable various aspects of the pilot to be tested with the view to broader and national roll-out in the future.

Ongoing resourcing of clinical quality registries was seen by the majority of the pilot registries as major barrier to the establishment and sustainability of future clinical quality registries. This also has implications for the participating institutions due to the impact on staff time to collect data for the registry. Resourcing is also likely to impact on decisions about data linkage and interoperability between registries and administrative data systems.
4.3 Ethics approval processes

All of the pilot registries expressed concerns about the barriers they faced in gaining ethics approvals. Where ethics approvals were delayed or not forthcoming for participating institutions during the project this necessarily impacted on achieving the required national coverage for a clinical quality registry.

There were also concerns about inconsistencies between institutional ethics committees in assessing ethics approvals for establishing a clinical quality registry based on opt-out consent. In one case, a pilot registry decided to overcome delays by choosing to operate with opt-in consent. Assistance was also sought from the Commission to clarify ethics requirements for clinical quality registries and to lend support for clearance processes so as not to unduly impact on the project timelines.

There remains a concern that institutional ethics committees are not necessarily assessing ethics applications for clinical quality registries consistently, suggesting lack of understanding about the purpose and potential benefits of clinical quality registries; and the safety and quality agenda more broadly.

This suggests an ongoing role for the Commission in clarifying the role of clinical quality registries in terms of safety and quality of health care. A number of pilot registries suggested the Commission could play a facilitating role in relation to the required ethics approval processes for clinical quality registries.

4.4 Governance arrangements

Most of the pilot registries adapted existing governance arrangements from within clinical 'craft' groups for the purpose of the pilot. These were generally considered appropriate and useful. A number of aspects associated with governance presented issues and barriers to adopting the draft *Operating Principles and Technical Standards* within the timeframes for the project.

For some of the pilot registry managers, the governance arrangements have required large and burdensome management structures and processes. This was perceived as onerous and created difficulties with managing the number of stakeholder groups involved.

Achieving jurisdictional representation within governance structures was seen by some as problematic, but nevertheless essential to ensure government support and funding for establishing a clinical quality registry.

In one pilot registry, formal governance arrangements were not adopted in the pilot phase. This meant the *Operating Principle* was not being directly tested by this pilot registry during the project. Nevertheless, the pilot registry fully supported the need for formal governance arrangements from its experience in establishing an existing related clinical registry. The *Operating Principle* will be adopted when a national registry is fully funded and established.

For some pilot registries, the governance arrangements did not necessarily provide the level of clinical buy-in required for the operation of a clinical quality registry, especially in terms of outcome measures and reporting for the purpose of improving the safety or quality of patient care. This may reflect the level of buy-in for a pilot registry, which may be strengthened over time when the pilot becomes national in coverage. It may also suggest the concern of clinicians about how data are collected and reported on by a registry.

Clinical leadership associated with a clinical quality registry was seen as an essential requirement for the data to be collected and used for the purpose of improving the safety and quality of health care.
Lack of, or poor clinical leadership, was therefore considered a potential major barrier to the effective uptake, operation and impact of a clinical quality registry for clinical quality improvement.

4.5 Technical complexity of the standards

The Technical Standards in particular have been seen as not very user-friendly, even for those pilot registries with strong existing IT expertise.

Registry managers were less comfortable overall with the complexity of the technical standards, suggesting that fully testing and validating all the Technical Standards suggested in the Standards Map and within the project timeframes was not feasible.

The perceived complexity of the technical standards required a number of pilot registries to employ and fund technical experts to support them in the implementation of the registry. On the other hand, the technical support gained assisted the registries to understand the local IT environment in which they were operating and hence, to be able to better test and validate the technical standards suggested in the draft Operating Principles and Technical Standard document than they would otherwise have been able to do unassisted.

Lack of technical capability in registry teams was seen by many of the pilot registries as a significant barrier to adequately adopting the technical standards in particular.

4.6 Local institutional IT requirements and cost implications for complex IT systems

Many of the pilot registries felt constrained by their existing local IT environments, as well as those of the participating institutions. This was seen as a major barrier to adopting specific standards recommended or required for higher levels within the NEHTA architecture, including the cost implications for the registry managers and the participating institutions. Existing registries generally found this barrier more significant than new registries due to pre-existing investment in their current IT systems.

In addition, the readiness or lack thereof of the Australian health system for higher level interoperability was challenged by all of the pilot registries and seen as a major external barrier to adopting standards required for higher levels within the NEHTA architecture. They believed there are few facilities with the technical knowledge or capacity to cooperate with a NEHTA level 4 registry.

This barrier was also seen by many of the pilot registries as significant and likely to be an ongoing barrier for future clinical quality registries.

In reporting on the issues and barriers experienced by the pilot registries during the project, we were impressed by the thought given by the pilot registries about their own immediate environments, as well as the broader system level issues that needed to be understood and tackled to establish and maintain a clinical quality registry.

4.7 Overall comment

Not all of the above mentioned issues and barriers will necessarily continue beyond the conclusion of the project. However, specific issues in relation to ethics, governance and resourcing, and the need for technical capability in relation to adoption of technical standards are likely to be ongoing for the pilot registries as they move towards or roll out national registries.
The same or similar challenges are also likely to be faced by new clinical quality registries as they adopt the *Operating Principles and Technical Standards* for their registry. The lessons learned in this project therefore should be of interest to others wanting to establish clinical quality registries for other health conditions and interventions.
5. Final outcomes of the pilot registries in testing and validating the draft *Operating Principles and Technical Standards*

This section of the report focuses on the evaluation of the final outcomes of the six clinical quality registries funded to test and validate the draft *Operating Principles and Technical Standards* for Australian clinical quality registries.

The final phase of the evaluation adopted a summative approach, drawing upon:

- each of the final reports provided by the pilot registries to the Commission in October 2009
- analysis of progress and monthly reports over the previous 12 months
- observations made during site visits in January and June 2009, and
- multi-site workshops in February and October 2009.

Our approach to assessing and presenting the final outcomes of the pilot registries is described below.

5.1 Summative evaluation framework for the project

To assess the final outcomes of the pilot registries in testing and validating the draft *Operating Principles and Technical Standards* we developed an evaluation framework based upon the draft *Operating Principles and Technical Standards* and the terms of reference for the evaluation, outlined in section 2 above.

Each of the *Operating Principles and Technical Standards* has been evaluated in light of the testing and validation processes adopted and reported on by the six pilot registries.

The summative evaluation framework brings together the collective insights, lessons learned and recommendations arising from the involvement of pilot registries in the project overall.

The completed Summative Evaluation Framework with the detailed analysis that was undertaken for the final phase of the evaluation is at Attachment B.

The recommendations arising from the evaluation are directly linked to the draft *Operating Principles and Technical Standards* document, while analysing each of the pilot registries’ reports about the principles and standards in terms of:

- efficacy (or relevance)
- feasibility and indicative cost-effectiveness
- issues and barriers in adopting the principles and standards

Section 6 which follows provides individual pilot registry status reports to demonstrate:

- particular approaches to adopting, testing and validating the draft *Operating Principles and Technical Standards* by the individual pilot registries
- particular challenges faced by each registry in adopting the draft *Operating Principles and Technical Standards*, and
• achievements in establishing a clinical quality registry.

Section 6 therefore complements this section which is evaluating the final outcomes for the project overall.

5.2 Overall outcomes of the project

5.2.1 Operating Principles

By the end of the project, the pilot registries had reported comprehensively about the Operating Principles, indicating compliance with, or support for, the majority of the principles, albeit with some qualifications in relation to certain health conditions and interventions for particular registries.

As noted in the Summative Evaluation Framework at Attachment B, most of the Operating Principles for a clinical quality registry were considered relevant and appropriate by the majority of the pilot registries. Feasibility and cost-effectiveness were also assessed within the evaluation framework in relation to the Operating Principles and associated Technical Standards.

It was noted throughout the evaluation of the project that the feasibility of adopting certain principles within the project timeframes was in large part associated with the range of issues and barriers discussed in the previous section of the report. It is possible therefore that a pilot registry considered the efficacy and relevance of adopting a principle or standard for the purpose of being a clinical quality registry, but considered it was not feasible or cost-effective to adopt on a practical level during the pilot phase of the project.

In cases where they reported that they had either not tested or only partially tested a principle, they either indicated in-principle support, or stated they were not in a position to make specific recommendations about changing the principle concerned.

Where a pilot registry had indicated a principle was not relevant to their particular registry, a judgement was required as to whether to qualify or change the principle in some way, based on our assessment of the justification for their recommendation. Non-compliance against a core principle may on the other hand suggest that the registry is not functioning sufficiently as a clinical quality registry, but more directed to research or clinical audit.

Recommended changes by the pilot registries to the draft Operating Principles and Technical Standards documentation were assessed and documented in light of their justification for a particular change. If in our view the change did not strengthen the registry in relation to OP1 in particular, or was either too, or not prescriptive enough, we have made alternative suggestions to ensure internal consistency in the final Operating Principles and Technical Standards.

In essence this means that only some changes are required to the Operating Principles on the basis of our evaluation of the testing and validation processes adopted by the pilot registries.

5.2.2 Recommended changes to the Operating Principles

In evaluating the outcomes of the project overall we have drawn conclusions and recommendations for each principle in the draft Operating Principles and Technical Standards in the completed Summative Evaluation Framework at Attachment B.

Many of the Operating Principles (20) are supported without reservation and therefore do not require major rewording or qualification of the supporting text associated with the principle. A small number (4) are supported as sound, but with a note that they were not fully tested by pilot registries during the evaluation period.
In summary, the suggested changes to the draft *Operating Principles and Technical Standards* include:

- the final *Operating Principles and Technical Standards* should be separated into stand-alone, but adequately referenced documents
- a number of principles could be strengthened through refinement of the wording of the *Operating Principle* itself (see below) and/or qualification of the supporting text, and
- a number of typographical corrections are required.

One particular issue with the wording of *Operating Principles* concerns the extent to which they are presented as mandatory for an Australian Clinical Quality Registry. The words ‘must’ and ‘should’ appear to have been used to impart mandatory or conditional expectations in relation to compliance with each *Operating Principle*. We propose that an explanation be placed early in the document to make clear that ‘must’ signals a mandatory obligation on Australian Clinical Quality Registries to comply, whereas ‘should’ makes compliance conditional on circumstances that a non-compliant Australian Clinical Quality Registry has an obligation to explain.

In the light of this clarification, we have reviewed the use of ‘must’ and ‘should’ in the wording of all 42 *Operating Principles* and recommend that the following additional *Operating Principles* be mandatory, and thus be reworded:

- Operating Principle 1
- Operating Principle 2
- Operating Principle 4
- Operating Principle 15
- Operating Principle 22
- Operating Principle 23
- Operating Principle 29 – replace ‘needs to’ with ‘must’
- Operating Principle 30
- Operating Principle 33
- Operating Principle 34 – replace 3 instances of ‘should’ with ‘must’
- Operating Principle 36
- Operating Principle 37

Other proposed rewording of *Operating Principles* for which we make specific recommendations for change is as follows:

1. Australian Clinical Quality Registries must be developed with clear and precisely defined purposes aimed at improving the safety and/or quality of health care.

3. Data collected by Australian Clinical Quality Registries should be confined to items which are epidemiologically sound, i.e. simple, objective, reproducible, valid (including for risk adjustment) and related to a specific case definition.

8. The collection of data for an Australian Clinical Quality Registry should maintain an appropriate balance between the time and cost of data collection and its impact on patient care, particularly where clinicians are directly involved in data collection, and must not be an unreasonable burden or incur a cost to consumers.
15. Australian Clinical Quality Registries must collect sufficient patient-identifying information to support the registry's stated purpose. Most clinical quality registries would require individually identifiable data, for which use of national Individual Healthcare Identifiers is recommended.

23. Australian Clinical Quality Registries must have a robust quality assurance plan which allows ongoing monitoring of the completeness and accuracy of the data collected.

39. Clinicians and/or staff at contributing units should have the capacity to undertake ad hoc analyses of their data to enable monitoring of clinical care.

Other changes are detailed in the completed Summative Evaluation Framework at Attachment B to the Operating Principles.

5.2.3 Technical Standards

While the majority of Operating Principles were supported by the pilot registries, support for the Technical Standards was less straightforward due to their perceived complexity, but also lack of technical capability in the majority of the pilot registry teams.

Pilot registries generally regarded many of the Technical Standards as beyond their current scope and purpose, whilst acknowledging the value of the standards for development of their registries in a more sophisticated IT environment. Although complexity of the standards themselves was an issue, and their capacity to comprehend them was a constraint, most pilot registries made efforts to understand what the standards offered and made decisions based on current needs, the circumstances at source institutions and the cost of investing in more advanced IT capability. One new pilot registry (AuSCR) outsourced its IT development and, while it reported compliance with recommended standards to the level it required, commented that it had to bear heavy financial and time costs. Another (ACPR) investigated full implementation of the NEHTA-recommended standards and provided a comprehensive report on its findings. This, too, was achieved at the expense of heavy time costs for its in-house IT experts and many of the standards it accepted could not be implemented during the period of the evaluation.

The perceived complexity of the Technical Standards, and the need to access high level technical support during the project, in turn impacted on the extent to which the pilot registries were able to test the standards required at higher levels within the NEHTA architecture. By virtue of this, the ability for the evaluation to fully assess the efficacy, feasibility and indicative cost effectiveness of all the standards suggested in the standards map was also limited.

Pilot registries also noted a gulf between the Operating Principles and the Technical Standards sections of the document. The evaluation team agreed and makes recommendations below about separating the document into two components while strengthening cross-references between them.

Notwithstanding the views expressed about the Operating Principles and Technical Standards document, the substantive reasons given for limited adoption, testing and validation of the technical standards related to:

- local institutional IT requirements, and
- cost implications to the registry in implementing new and/or more technically complex IT systems across participating institutions to achieve higher levels within the NEHTA architecture.
5.2.4 NEHTA architecture

All but one of the pilot registries see the achievement of NEHTA Level 3 or above as not feasible in the short to medium term. The readiness, or lack thereof, of the Australian health system for higher level interoperability was challenged by all of the pilot registries. They believed there are few facilities with the technical knowledge or capacity to cooperate with a NEHTA level 4 registry. Generally the registries consider the NEHTA architecture as too futuristic against the existing broader health IT environment, with diversity of IT information systems that are not yet ready to achieve interoperability at anywhere near the level envisaged in the NEHTA long-term architecture.

With a range of views in relation to the NEHTA architecture, constraints in existing IT environments and the general perception of a need for strong IT support in relation to the technical standards, a case has emerged that new clinical quality registries will require access to external IT expertise and guidance to fulfil the expectations of NEHTA level 3 and above.

Although this report continues to use the language of the NEHTA ‘levels 1 to 4’ it should be noted also that several pilot registries disagreed with these categories and would prefer that each standard be viewed in terms of the functionality supported. Some registries classed themselves as ‘between’ NEHTA levels.

5.2.5 Specific comments on the Technical Standards

5.2.5.1 IT infrastructure and capacity

During the evaluation we observed that adherence to technical standards is likely to influence the kind of organisation that is able to run a clinical quality registry. The technical knowledge required was thought to be beyond clinical teams. For this reason, pilot projects formed partnerships between clinical teams and technical support teams. In some cases these came together ‘in house’, or through established relationships. However, in others outsourced technical support was arranged even for NEHTA Level 2 architecture.

The level of engagement of the technical partner also affected the ability of the clinical teams to learn from the experience of implementing the technical standards.

The IT capability of organisations providing data to a registry can be a constraint on the registry’s achievement of standards. In case of AROC, the large number of contributors dictates that a technical solution close to NEHTA Level 1 is required. On the other hand, ACPR is seeking to implement Level 4 interoperability with those hospitals where it can be achieved.

5.2.5.2 E-health interoperability

Not all pilot registries express a need for interoperability with other registries and healthcare systems. One-off data exchange may work satisfactorily for them when needed. Some that were interested to move to higher technical levels, point out that the Australian health system is in general not ready for such engagement.

One pilot registry pointed out that the level of investment required to achieve higher levels of interoperability is too great a risk for them while they operate in an uncertain funding environment. The testing and validation of standards relating to e-health interoperability therefore did not occur to any great degree within the timeframes of this project.
ACPR emerged as a strong supporter of the e-health interoperability standards and has made good progress towards implementation. Its report offers advice about specific software tools it found useful in applying the standards. Other pilot registries generally saw e-health interoperability standards as not relevant or not cost-effective in their current operating environment and did not implement them. Of the individual standards listed, Uniform Modelling Language (UML) v2.0 was the most widely accepted and used by pilot registries.

5.2.5.3 Clinical communications

There was general uncertainty about the capacity to fully implement SNOMED-CT as a standard terminology at this stage. Some consider it overly complex for their limited application. While some pilot registries are using SNOMED-CT terms where applicable, most have commented on problems matching registry-specific terms. Some referred to engaging assistance offered by NEHTA to understand the relevance of using SNOMED-CT and to identify matching terms. There was also concern about degree to which SNOMED-CT has been taken up in mainstream health information systems. The general feeling is that development of SNOMED-CT in Australian clinical contexts will take some time.

Use of METeOR for data set specifications has been adopted more generally. Some adverse comments were made about the effort required to comply strictly with documentation requirements for new items and about the availability of post-training support in this case. However, pilot registries are generally adopting METeOR data that are relevant to their dataset. Two pilot registries have developed simplified versions of their data dictionary for users, because they found METeOR data structures too complicated for clinicians and registry users in general.

The HL7 standard was investigated by some registries that intend to build automated data transfer from contributing organisations. BiNBR will consider using HL7 transfer of administrative data when it is collecting patient-identified data. ACPR concluded that XML and web services would be more flexible and more cost-effective. ACPR has also commented that health institutions that have implemented HL7 messaging may be using different versions.

The NEHTA-recommended data type standard is well accepted. Pilot registries generally indicated that their data sets require only a limited range of data types that are already commonly applied in program software. Because of this, compliance with the NEHTA-recommended data type standard is not an issue.

5.2.5.4 Unique healthcare identification

Unique healthcare identification standards, both of providers and clients, are well accepted by pilot registries. A national healthcare identification system is keenly awaited by registries and some have already made provision in dataset development. Others expect a smooth transition from existing standards, which are well supported as an interim measure.

5.2.5.5 Identity management

Identity management modules are optional for NEHTA Level 2 registries, those limited to one-way supply of data. The standard documents were described as complex and overlapping in nature. Nevertheless, most registries have examined the standards for relevance and have either implemented certain elements or been guided in their identity management systems. ACPR placed emphasis on the importance of Security Techniques standards while acknowledging that others are still under evaluation. AROC and NOffRA reported use of local institution IT security policies and standards. They argued that the security offered by established IT environments would often be of a standard at least as high as the NEHTA-
recommended standards. None of the registries had implemented OASIS XACML or SAML identity management.

The complexity of the standards in this area and the evidence provided in pilot registry reports of the efforts required to evaluate them suggests a need for a clearer guide to help other registries to understand identity management. It is the area of standards that begs most for a 'roadmap' for beginners, something that could be considered in the Commission’s final review of the *Operating Principles and Technical Standards*. The detailed comments of the pilot registries could be taken into account in developing additional guidance.

5.2.5.6 Secure messaging

Web services are not required for registries operating with NEHTA Level 2 architecture. Nevertheless three registries investigated implementation for specific contributing units, where compatible IT services exist. One registry considered it important for future data acquisition but did not implemented web services as part of its pilot testing activities. The state of readiness of the health system in general is seen as a constraint on widespread use of web services at present, in line with observations made above about e-health interoperability. XML file transfer has been introduced by several registries and was described by one as efficient and cost-effective.

5.2.5.7 Supply chain

Supply chain standards are not relevant to most registries involved in pilot testing. ACPR found implementation for implant devices difficult because of the non-standard referencing used by manufacturers. The status of this standard as 'required' should be qualified according to whether devices or other supplied items are part of a registry dataset.

5.2.5.8 Engagement and adoption

Technical standards on engagement and adoption of standards are supported by pilot registries. Corporate Governance of ICT is assessed as particularly useful for understanding management responsibilities.

5.2.6 Recommended changes to the Technical Standards

On the basis of our evaluation the following changes to the presentation of Part B: *Technical Standards* are recommended.

As suggested above, we recommend that the *Operating Principles and Technical Standards* be separated into stand-alone, but adequately cross-referenced documents. It was clear throughout our evaluation that *Operating Principles* were well understood and generally accepted by clinical teams and registry management. These *Operating Principles* are likely to have a reasonable 'shelf-life', longer than *Technical Standards* in a more volatile development environment and with changing levels of uptake of specific standards within the Australian health system. *Operating Principles* are also likely to attract interest outside of the Australian health system, given the shortage of international literature on the conduct of clinical quality registries. For these reasons, we recommend that Part A: *Operating Principles* become a stand-alone document.

As a separate document, it would be possible to consider alternative means of dissemination up to date *Technical Standards*, such as on a Clinical Quality Registries Portal website.

We hasten to note that this is not to downgrade the focus on Part B: *Technical Standards*. On the contrary, we believe that the two parts of the document should
be more tightly inter-woven through references and better explanations about the role of relevant Technical Standards in implementation of Operating Principles. As technology advances, these connections will become stronger and Technical Standards can be expected to move away from ‘recommended’ towards a ‘mandatory’ end of the spectrum.

The current Part A: Operating Principles, in our view, references Part B Technical Standards in a manner that is too general, putting too much onus on the user to identify what is relevant to their registry application and contributing to the view that their implementation is ‘too hard’.

As a minimum, we recommend that references and brief guidance about the relevance of the specific Technical Standards in column 2 of the following table should be added to the text discussion of the Operating Principles listed in column 1

<table>
<thead>
<tr>
<th>Operating Principle</th>
<th>Related Technical Standard(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Data collected by Australian Clinical Quality Registries should be confined to</td>
<td>Clinical Communications - Data Specifications</td>
</tr>
<tr>
<td>items which are epidemiologically sound, i.e. simple, objective, and reproducible.</td>
<td></td>
</tr>
<tr>
<td>4. Methods used to collect data in Australian Clinical Quality Registries should</td>
<td>Clinical Communications – HL7</td>
</tr>
<tr>
<td>be systematic, with identical approaches used at the different institutions</td>
<td></td>
</tr>
<tr>
<td>contributing information.</td>
<td></td>
</tr>
<tr>
<td>11. Standard definitions, terminology and specifications should be used in</td>
<td>Clinical Communications – Terminology and Data Specifications</td>
</tr>
<tr>
<td>Australian Clinical Quality Registries wherever possible to enable meaningful</td>
<td></td>
</tr>
<tr>
<td>comparisons to be made and to allow maximum benefit to be gained from linkage to</td>
<td></td>
</tr>
<tr>
<td>other registers and other databases (if approved by relevant ethics committees,</td>
<td></td>
</tr>
<tr>
<td>etc.).</td>
<td></td>
</tr>
<tr>
<td>12. Australian Clinical Quality Registries must use data dictionaries when they</td>
<td>Clinical Communications – Data Specifications</td>
</tr>
<tr>
<td>are established to ensure that a systematic and identical approach is taken to</td>
<td></td>
</tr>
<tr>
<td>data collection and data entry. They need to publish eligibility criteria,</td>
<td></td>
</tr>
<tr>
<td>metadata, data dictionaries, etc.</td>
<td></td>
</tr>
<tr>
<td>13. To avoid duplicating data capture, Australian Clinical Quality Registries use</td>
<td>Clinical Communications – HL7</td>
</tr>
<tr>
<td>data from existing data sources, including administrative data, where they are of</td>
<td>Secure Messaging – Web Services</td>
</tr>
<tr>
<td>a satisfactory quality.</td>
<td></td>
</tr>
<tr>
<td>14. Australian Clinical Quality Registries should have the capacity to enhance</td>
<td>Unique Healthcare Identification – Health Care Client Identification</td>
</tr>
<tr>
<td>their value through linkage to other disease and procedure registers or other</td>
<td>Clinical Communications – HL7</td>
</tr>
<tr>
<td>databases.</td>
<td></td>
</tr>
<tr>
<td>Operating Principle</td>
<td>Related Technical Standard(s)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>15. Australian Clinical Quality Registries should collect individually identifiable patient or subject information.</td>
<td>Unique Healthcare Identification – Health Care Client Identification</td>
</tr>
</tbody>
</table>
| 19. To protect register data, Australian Clinical Quality Registries must utilise secure access controls and secure electronic transfer and electronic messaging systems. | Identity Management
Secure Messaging |
| 21. Institutional policy principles set out in Part B: Technical standards should be met. | Engagement and Adoption |
6. Final individual status reports for each pilot registry

The following section of the report provides final status reports for each pilot registry in relation to testing and validating the draft *Operating Principles and Technical Standards*.

Individual status reports were also provided as part of the evaluation at baseline and mid-term. These reports indicated the progress of each pilot in relation to the testing and validating processes adopted, and the issues and barriers they were experiencing throughout the evaluation of the project.

Overall, the independent evaluation team was pleased with the outcomes of the pilot registries in testing and validating the draft *Operating Principles and Technical Standards*. While some of the registries indicated they were not able to fully test and validate all the principles and standards during their pilot projects, they have generally reported comprehensively on the principles.

For reasons mentioned in previous sections of the report, the *Technical Standards were not as comprehensively tested and validated as the Operating Principles*, with considerable variability between sites in terms of the scope and depth of testing across the NEHTA architecture. The majority of the pilot registries focussed on technical standards required up to NEHTA Level 2 in the architecture, thereby constraining their ability to comment on technical standards required for NEHTA Level 3 and above.

For the purpose of Section 6, the summative evaluation report provides individual pilot registry status reports to demonstrate the:

- approaches to adopting, testing and validating the draft *Operating Principles and Technical Standards* by each of the individual pilot registries
- particular challenges faced by each registry in adopting the draft *Operating Principles and Technical Standards*, and
- achievements in establishing a clinical quality registry.

These final status reports draw largely upon the final reports provided to the Commission in October 2009, but with reference to key issues raised by the pilot registries in the previous phases of the evaluation.

The status reports are provided in the following order:

- Australian Cardiac Procedures Registry (ACPR)
- Australian Stroke Clinical Registry (AuSCR)
- Bi-national Burns Registry (BBR)
- National Breast Cancer Audit (NBCA)
- Neck of Femur Fracture Registry of Australia (NOffRA)
- Australasian Rehabilitation Outcomes Centre (AROC)
6.1 Australian Cardiac Procedures Registry (ACPR)

The ACPR was managed in the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne Victoria, in collaboration with the Australian Society of Cardiothoracic Surgeons and the Centre for Cardiovascular Research and Education in Therapeutics.

The aims and rationale of the ACPR were to:

- enhance and develop the merger of two existing clinical registries in cardiac surgery and percutaneous cardiac intervention (PCI) into a scalable national cardiac procedures registry that will improve the reliability of information acquisition across all contributing locations

- develop an additional module that will extend the registry information collection to include implantable devices such as pacemakers and implanted defibrillators. The development of such modules will enhance the cardiac registry functionality to provide a common platform to enhance its national utility

- the draft operating principles and technical standards will be tested and evaluated through the development of this nationally scalable registry

6.1.1 Key outcomes and issues for the ACPR

The ACPR developed a web based cardiac surgery, percutaneous cardiac intervention and device registry, satisfying technical standards for Level 1 to 3 in relation to authentication, access and security. The ACPR is a merger of two existing registries with further integration of information about implantable devices anticipated for the full scale national ACPR.

The ACPR aspires to national coverage and to NEHTA Level 4, although they noted that Level 4 data collection remains a challenge due to the clinical information required for risk adjustment.

Agreement on a minimum data set was contentious for the ACPR due to concerns about the adequacy of risk adjustment. The Australasian Society of Cardiothoracic Surgeons (ASCTS) and the Melbourne Interventional Group (MIG) data sets were revised and adopted to enable compliance with the Operating Principles in terms of collecting epidemiologically sound data.

The ACPR noted the critical importance of clinical leadership in the ACPR, with participation of key clinical organisations in the project and governance arrangements to ensure ongoing clinical engagement and buy-in.

As with the other pilot registries, ethics approval based on opt-off consent was an issue for the ACPR. Educational effort is recommended to ethics committees in relation to clinical quality registries to overcome these barriers.

In aspiring to NEHTA Level 4, ACPR comprehensively embraced the testing and validation of the Technical Standards. They were able to draw upon internal IT expertise to test the standards relevant to the type of registry, and to a higher NEHTA Level than the other pilot registries. They were supportive of the NEHTA recommended technical standards as appropriate and essential for clinical quality registries, endorsing TOGAF, SNOMED CT, ISO27001 for identity management, in particular.

Nevertheless, they indicated concern that at present clinical quality registries did not have a regulated IT infrastructure in which to operate. They recommended the
establishment of accredited registry centres with specialist expertise in clinical information data management.

Like other pilot registries, the ACPR considered the sustainability of resourcing a major barrier to the successful establishment and maintenance of clinical quality registries. They separately commissioned a report on sustainable funding models to inform future discussion on how Operating Principle 42 can be met.

6.1.2 Overall comments

The ACPR fully embraced the establishment of a registry whose primary focus is on supporting improvements in clinical practice for a range of cardiac procedures. It is an ambitious clinical quality registry in a high cost and high impact area of medicine. They are aiming to establish Level 4 data collection in participating sites wherever possible.

ACPR reported extensively on the testing and validation of the draft Operating Principles and gave particular attention to the Technical Standards including those applicable to NEHTA Level 3 and above.

Their final report demonstrated a thorough assessment of both the principles and standards to be met for a clinical quality registry and provided a number of thoughtful and useful recommendations to improve the adoption of best practice principles and standards for Australian Clinical Quality Registries.
6.2 Australian Stroke Clinical Registry (AuSCR)

AuSCR was managed by a consortium of two leading academic research institutes; the National Stroke Research Institute and the George Institute for International Health; and two leading non-government organisations: The National Stroke Foundation and the Stroke Society of Australasia.

The aims and rationale of the AuSCR were:

- the development of a new clinical registry, spanning all aspects of the development and implementation process (from governance establishment, dataset selection, ethics, clinical uptake and operation)
- migration of existing data into a registry compliant with the principles as the NSRI proposal includes the migration of a minimum of 1000 records from past stroke audits into the Australian Stroke Clinical Registry – such that the impacts of this can be assessed and reported
- implementation across multiple state jurisdictions. The NSRI project will provide the Commission with the opportunity to assess how the Operating Principles and Technical Standards support to impact implementation between states and territories
- the full registry lifecycle within the 13 month period of the pilot. The NSRI project will successfully allow testing and validation of the principles and standards during registry design, build, implementation and steady state operations

6.2.1 Key outcomes and issues for the AuSCR

AuSCR was established as a new, web based NEHTA Level 2 registry through involvement in the Australian Clinical Quality Registries project. It involved migration of existing records into the test registry, and a live web tool by half way through the project. By October 2009 four active pilot hospitals had entered 204 stroke patients in AuSCR online.

AuSCR is intended to provide national data on the process of care and outcome of acute stroke hospital admission, where eligible admissions were entered into AuSCR soon after presentation with the clinical signs and symptoms of stroke. The testing and validation of the draft Operating Principles and Technical Standards covered a twelve month life cycle covering registry design, build, implementation and steady state operations, while formally evaluating the factors that facilitated or impeded adoption of the recommended principles and standards.

Given the size and scope of AuSCR, the project timeframes were considered too short. They recommended future pilots be given sufficient time, namely 18-24 months, to establish the registry, as well as to trial different methods of follow-up data collection.

As with the other pilot registries, AuSCR found the testing of the Technical Standards challenging for the clinical teams involved in establishing the registry. The registry managers used an external commercial technology vendor to develop AuSCR as an online database, therefore relying upon external technical capability for this important part of the project. They recommended a national system for accrediting and nominating e-health developers to assist new registries to comply with the Technical Standards as a key role for the Commission.
Resourcing was also considered a major issue for AuSCR. They recommended data linkage capability will assist clinical quality registries to comply with Operating Principles relating to data collection from the entire eligible population and ascertainment of outcomes in the most efficient and cost effective way. Budgets for clinical quality registries should allow for data linkage; and be leveraged through State and Territory health services.

Opt-out consent protocols were considered problematic when cases were missed during inpatient admission.

Lack of access to existing policies for clinical quality registries was seen as a particular issue for a new registry like AuSCR. They recommended existing or generic guidelines be made available to new registries, and that a list of recommended policies would have been helpful to the establishment of their pilot.

Submission of ethics application to different states, initial training and implementation at various hospitals, and establishment of patient follow up were cited as challenges for AuSCR in the pilot phase, largely because of the short timeframes for the project.

Formal governance arrangements involved many stakeholder groups, under a consortium of two leading academic research institutes for stroke:

- The National Stroke Research Institute
- The George Institute
- The National Stroke Foundation
- The Stroke Society of Australasia.

While this was a large management requirement for AuSCR, it assisted AuSCR to make timely decisions and enabled the pilot to achieve significant progress in short timeframes for the project.

6.2.2 Overall comment

AuSCR was a large and ambitious attempt to establish a clinical quality registry to comply with the draft Operating Principles and Technical Standards to NEHTA Level 2, and with the potential to move to Level 3 in the future.

Integral to testing and validating the principles and standards was a formal program evaluation approach. This enabled AuSCR to document their experiences, as well as improve their registry as part of an action learning cycle or formative evaluation approach. AuSCR was the only pilot registry to adopt an internal evaluation into their project.

Despite the challenges of the project, AuSCR was able to report comprehensively on their assessment of the testing and validation of the draft Operating Principles and Technical Standards. Because of outsourcing specialist IT expertise less feedback was provided on the technical standards per se. However through their approach to establishing a new and clinically complex registry, they demonstrated enthusiasm and commitment and have contributed positively to providing sound feedback and recommendations to the Commission on the project.
6.3 Bi-national Burns Registry (BiNBR)

The BiNBR is managed in the Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne Victoria in association with the Australian and New Zealand Burns Association.

The aims and rationale of the BiNBR were to:

- formalise governance and ethics considerations using the principles for the establishment and management of clinical registries
- update minimum dataset and data dictionary according to the principles outlined to increase participation to all eligible burns units
- establish key clinical indicators to enable benchmarking between units
- include additional outcome measures to increase the capacity of the registry to monitor the quality of health care provided
- establish improved data transfer protocols across participating units according to the NEHTA principles
- establish a routine reporting schedule

6.3.1 Key outcomes and issues for the BiNBR

The BiNBR captures information in a web-based information system about adult and paediatric burn injuries admitted to Australian and New Zealand burns units. Approximately 50,000 burns related hospital admissions that occur each year in Australia could potentially be captured in the BiNBR.

During the project, data from an existing NEHTA Level 2 data system was mapped and migrated to the new system in July, approximately half way through the project. By October 2009, 577 admissions from 10 participating sites were entered on to the new web-based system. The aim is to recruit 400 participants for the pilot registry.

The BiNBR reported that involvement in the project provided the opportunity for an existing epidemiological registry to evolve into a clinical quality registry capable of monitoring and improving health care performance and benchmarking.

As part of their involvement in the project, a revised minimum data set of 30 data items, which included relevant risk adjustment elements were incorporated into a data dictionary using the METeOR.

The draft Operating Principles and Technical Standards were used to develop key quality indicators (QI) and to gain ratification through the Steering Committee. The development of key QI and collection of outcome data will enable the BiNBR to monitor and benchmark health care performance across contributing institutions.

The development of QI for burns was a significant challenge for the working group due to variations in practice in burns care in Australia and nationally; the ability to quantify outcomes of clinical care: and the resource commitment of the participating sites.

The BiNBR developed a web-based information system based on an existing NEHTA level 2 data base, which only partially met the Operating Principles for data quality. While the risks regarding privacy were considered minimal because the data was de-identified, risks were acknowledged in relation to security and authentication.
The BiNBR has noted a number of issues in testing and validating the draft Operating Principles and Technical Standard for the purpose of the project. The short timeframes for the project were suggested as impacting negatively on their ability to fully test all of principles and standards for a NEHTA Level 2 registry. They expressed concern that finalisation of the Operating Principles and Technical Standards may result in the inclusion of principles and standards not fully evaluated.

Other issues noted during the pilot phase included:

- impact of the local IT environment for the registry and participating units in relation to adoption of particular standards, TOGAF, HL7, NEHTA data specifications
- technical complexity of standards and minimal relevance to burns, eg SNOMED,
- data exchange / linkage with hospital administrative systems requiring manual intervention by each burns unit
- ethics approvals for some participating units were still pending in October 2009
- cost of data collection for longer term outcome measures

The BiNBR itemised a number of major challenges beyond the pilot project phase. These covered sustainable funding; collection of identifiable data; further testing and validation of standards; reporting on quality of care and outputs; data linkage; data access policies; and improvements to the web-based information system.

6.3.2 Overall comments

The BiNBR made significant progress in establishing a clinical quality registry in a challenging area of health care. While they were constrained by the timeframes in relation to fully testing the draft Operating Principles and Technical Standards, they successfully attempted to use them as a guide for establishing a clinical quality registry from an existing epidemiological registry. They stated they valued the involvement in the project and developing the BiNBR into a full scale national registry, including New Zealand.

They demonstrated a clear and precisely defined purpose for the BiNBR directed at improving the quality or safety of burn care management, and a clear way forward in relation to the remaining challenges for the registry. While they expressed concern in relation to not fully testing all the draft Operating Principles and Technical Standards, they intend to continue to use it as a guide for future development of the registry.
6.4 National Breast Cancer Audit (NBCA)

The NBCA was managed by the Australian Safety and Efficacy Register of New Interventional procedures – Surgical, Royal Australasian College of Surgeons.

The aims and rationale of the NBCA were:

- to move the NBCA to a clinical quality registry for safety and quality assurance of early breast cancer treatment
- to evaluate the practical aspects of implementing the operating principles and technical standards in extending an existing audit into being a clinical quality registry
- to evaluate what impact the implementation of the operating principles and technical standards will have on the NBCA
- to identify and evaluate the impact of any barriers in implementing the operating principles and technical standards

6.4.1 Key outcomes and issues for the NBCA

The NBCA is an existing registry whose principle purpose is clinical audit. In testing and validating the draft Operating Principles and Technical Standards for clinical quality registries, the NBCA indicated it meets 27 of the 42 draft principles. While another 12 principles are either partially met or to be considered for future implementation, in the view of the NBCA, 3 remaining principles were considered either irrelevant to the audit, unfeasible or too difficult to implement.

The NBCA is in a period of transition from a voluntary audit based on Qualified Privilege, to a newly formed audit of the Breast Surgeons Society of Australia and New Zealand (Society of Breast SurgANZ). A number of the implementation issues they faced in testing and validating the draft Operating Principles and Technical Standards were considered outside the scope of the audit in its present form.

During the project timeframes in 2009, the NBCA:

- designed, tested and implemented a new website which went live in March
- incorporated a revised MDS short form on-line data entry form
- launched a new opt-out consent system in June
- refined the processes of data linkage and threshold reporting, and
- adopted a new approach to governance and funding.

In implementing the draft Operating Principles and Technical Standards, a number of which were common to the other pilot registries:

- lack of internal IT expertise
- the local IT environment – the NBCA was an older style website platform; incompatible formats with external sources and delays in data collection
- governance arrangements, and
- funding uncertainty.

Other issues that were specific to the NCBA impacted on their being able to comply with some of the Operating Principles and Technical Standards:

- voluntary nature of the audit
- low coverage
- direct measurement of patient outcomes was considered problematic for early breast cancer care
collection of patient outcome data was considered a burden in terms of data collection and was not support by the surgeons

data collection close to point of care was not considered to be implementable without impacting on coverage

The NBCA engaged IT consultants to provide advice on the technical standards for the audit. For the next upgrade to the NBCA website upgrade, standards in relation to terminology, data specifications and unique identifiers were recommended. However, no other standards were considered relevant or recommended for the purpose of the audit.

The NBCA made a number of recommendations to improve the draft Operating Principles and Technical Standards document. They expressed the view that the principles and standards relate more to the establishment of new clinical registries, acknowledging that existing registries, such as the NBCA, have significant barriers to the full implementation of the principles and standards suggested. Notably they indicated that a focus on measuring patient outcomes is problematic in the area of early breast cancer, and suggested that surrogate measures of performance or surgeon performance outcomes are a better outcome measure in this area.

They also reported the College of Surgeons was pleased to be involved in the pilot registries project and sees it as a way to improve existing registries and establish new registries to a high standard.

6.4.2 Overall comments

The NBCA registry team dedicated time and resources to systematically test and validate the draft Operating Principles and Technical Standards for clinical quality registries on the basis of a registry whose purpose is primarily clinical audit.

The audit’s original purpose was to provide a benchmarking tool for members of the Breast Cancer Section of the College to self-audit their practice, and later developed to providing a full clinical audit to better ensure high quality care is provided.

The aim of this project was to move the NBCA to a clinical quality registry for safety and quality assurance of early breast cancer treatment. As indicated in the final report to the Commission, the NBCA primarily functions as a clinical audit registry.

In evaluating the Australian Clinical Quality Registries project as a whole, it is difficult to judge the extent to which the NBCA can fulfil a role as a clinical quality registry as currently defined in the draft Operating Principles and Technical Standards.

Based on our analysis of the reports from each of the pilot registries in relation to the draft Operating Principles and Technical Standards, the future of the NBCA as a clinical quality registry will be dependent upon the feasibility of the NBCA to comply with principles especially in regards to:

- defining a clear and precisely defined purpose for improving quality or safety of care, in particular
- ascertainment of outcomes, especially in relation to patient outcomes
- coverage of the eligible population, and
- data collection at the point of care.
6.5 Neck of Femur Fracture Registry of Australia (NOffRA)

NOffRA is managed by the Musculoskeletal Research Group, Flinders University and Data Management and Analysis Centre, University of Adelaide, South Australia. Epworth, Richmond and Goulbourn Valley Health hospitals were involved in the pilot registry.

The aims and rationale of the NOffRA were:

- hip fracture is a major clinical issue which is becoming increasingly important as the population ages. Hip fracture is a sentinel event *par excellence* that enables effective assessment and comparison of hospital specific outcomes

- a registry in this area will not only establish and monitor the implementation of best practice, but will also be important in the development of preventative strategies

- the registry will evaluate the utility and ease of implementation of the draft *Operating Principles and Technical Standards* in the development of the new registry.

6.5.1 Key outcomes and issues for the NOffRA

The pilot project aimed to test the feasibility of establishing NOffRA based on a similar European model, the Standardised Audit of Hip Fractures. NOffRA also builds upon the experience and success of the National Joint Replacement Registry.

The broad outcome for NOffRA is to improve the quality and safety of care of patients following hip fracture by improving the effectiveness of acute health care delivery by all hospitals involved in the management of hip fractures. NOffRA provides the mechanism to compare the outcomes for patients in participating hospitals through relevant data collection on process of care and outcomes.

During the pilot phase, data collection included initial hospital admission data; four month post-surgery outcome data; re-operation and mortality. Hospital data collection included capture of fracture and surgical details in theatre, and further data obtained from jurisdictional separation data. Mortality data will be obtained from linkage to the AIHW National Death Index (NDI). Data verification was undertaken using State Health Department separation data.

The pilot registry included data collection at two, and for some patients, three or more points in time:

- discharge from the initial hospital admission
- four months after hip surgery
- discharge if a re-operation was necessary on the initial hip fracture
- death

Based on international experience, a number of valid measures of hospital performance in relation to hip fracture were identified for NOffRA:

- time to theatre
- length of stay
- mortality, and
• number of in-hospital complications, such as pressures sores, thromboembolism, infections, and bleeding.

During the NOffRA pilot 190 patients were recruited to the registry. 120 (63%) of patients were followed up 4 months after surgery. Differences between the participating hospitals in terms of types of hip surgery were found in analysis of this initial data.

In establishing the pilot registry and testing and validating the draft Operating Principles and Technical Standards, NOffRA reported a number of issues during the pilot project, including:

• problems and delays in gaining ethics approval for the pilot

• difficulties encountered because of using op-in consent i.e. missing consent forms from medical staff responsible for data collection

• assessment of outcomes four months after surgery was considered time consuming and too costly

• completion of data forms by interns

• difference in data collection methods in the contributing hospitals

• coding, matching and access to State Departments data

In testing and validating the draft Operating Principles and Technical Standards, NOffRA indicated support for the majority of principles. It also made a number of general recommendations about particular principles from the lessons learned from the pilot project which have been assessed in light of the evaluation of the project.

In terms of the NEHTA recommended standards, Clinical Communications, Secure Messaging E-Health Interoperability and Identity Management were reported as partially compliant. Identity Management and E-Health Interoperability were highlighted as requiring research.

6.5.2 Overall comments

NOffRA is a new registry that builds upon the IT infrastructure and history of the related National Joint Replacement Registry. The pilot project sought to test the feasibility of establishing a registry that focussed on improvements in the area of hip fracture management, prior to national roll out.

NOffRA’s experience and feedback in relation to the draft Operating Principles and Technical Standards indicated general support for the principles, but as with other registries, where IT infrastructure already existed, indicated barriers to the adoption of, or only partial conformance to, NEHTA recommended technical standards.

NOffRA has reported their intention to implement approaches to improve compliance with the draft Operating Principles and Technical Standards as it moves to roll out a national clinical quality registry.
6.6 Australian Rehabilitation Outcomes Centre (AROC)

AROC is managed in the Centre for Health Service Development, University of Wollongong, New South Wales.

The aims and rationale of the AROC were to:

- develop a national benchmarking system to improve clinical rehabilitation outcomes in both the public and private sectors
- produce information on the efficacy of interventions through the systematic collection of outcomes information in both the inpatient and ambulatory settings
- develop clinical and management information reports based on functional outcomes, impairment groupings and other relevant variables that meet the needs of providers, payers, consumers, the State/Commonwealth and other stakeholders in both the public and private sectors
- provide comparative data to subscribers using the national and international benchmarks
- test and evaluate the draft Operating Principles and Technical Standards for the Australian Clinical Quality Registries in the re-development and extension of AROC
- provide and coordinate ongoing education, training and certification in the use of the FIM and other outcome measures
- provide annual reports that summarise the Australian data
- develop research proposals to refine the selected outcome measures over time.

6.6.1 Key outcomes and issues for the AROC

AROC reported that assessing the draft Operating Principles and Technical Standards allowed AROC to benchmark itself in a way not previously available and to position itself to participate in the coordination and linkage of registry information in Australia.

As an existing registry, AROC was able to bring an interesting perspective to assessing the draft Operating Principles and Technical Standards through its pre-existing experience of establishing and managing a clinical registry with a focus on improving outcomes in rehabilitation.

AROC reported that while AROC’s focus on improved clinical rehabilitation is to maximise a person’s abilities and independence, restore lost function, prevent new or further functional loss, and work with other health care professionals, AROC does not have a relationship with any rehabilitation client.

AROC is episode based, with each episode reported on each rehabilitation occasion by the member providers. Importantly episodes for the same individual are not matched within the data base to form patient level information. The registry data is for inpatient rehabilitation episodes, but AROC plans to collect non inpatient (ambulatory) and paediatric (inpatient and ambulatory) in the future. The data items that form the validated FIN Instrument are the source of registry data for AROC.

AROC reported that it had undertaken an initial assessment of the draft Operating Principles and Technical Standards at the beginning of the project. Due to an assessment that the time, resources, technical expertise that was required to assess
the standards would be significant, AROC targeted its assessment to Level 2 NEHTA recommended standards, plus those thought important for improving the quality of data for enhancements to the registry.

AROC reported the majority of the operating principles were relevant to AROC, and they complied, partially complied or intended to comply. Notably, AROC does not comply and does not intend to comply with two of the following operating principles:

- OP 15: Australian Clinical Quality Registries should collect individually identifiable patient and subject information
- OP 34: participants and their next of kin should be made aware of the collection of register data.

Both of course relate to the episodic data provided to the registry from provider members, as opposed to patient identified data. While probabilistic matching is possible, according to AROC there are not sufficient patient identifiable data items to ensure a robust matching process. They also suggest that the introduction of the Unique Health Identifier (UHI) will enable the data to be reported as patient level data and linked and shared with other registry data without impacting on the confidentiality of the data.

AROC undertook a thorough and detailed assessment of the technical standards. In doing so they reported in detail on the local IT infrastructure within the University of Wollongong, the currency and categorisation of standards by NEHTA, assessed the relevance and compliance to recommended NEHTA standards, and indicated their ability and timeframes to comply with relevant standards. Of the 23 NEHTA recommended standards across the NEHTA recommended domains assessed, 15 were deemed relevant and 8 not relevant. AROC does not currently comply with some relevant standards, but either intends to in the future or will use a similar technology.

AROC’s main issues and barriers included:

- lack of relevance in relation to collection of episodic, as opposed to patient identified data
- difficulty in getting AROC sub acute care data into the National Health Data Dictionary (NHDD)
- constraints in changing an established registry due to existing local IT infrastructure and policies
- cost of adopting higher level NEHTA standards to achieve interoperability

6.6.2 Overall comments

AROC is a well established clinical registry which reports on episodic outcomes data. Its primary purpose is to provide comparative analysis on rehabilitation outcomes, and it complies with the majority of the operating principles and many of the technical standards. The detailed insights and recommendations concerning the draft Operating Principles and Technical Standards have been very useful for the evaluation of the Australian Clinical Quality Registries project.
7. Conclusions and recommendations from the evaluation

Conclusion 1: The evaluation of the Australian Clinical Quality Registry project demonstrated overall that the project was highly successful in testing and validating the draft *Operating Principles and Technical Standards* for clinical quality registries.

The six pilot registries funded by the Commission valued and benefited from testing and validating the draft *Operating Principles and Technical Standards*. Through their involvement in the project the pilot registries provided a number of soundly based insights into the potential operation of a registry whose principal purpose is to improve the safety and quality of clinical care. The project also confirmed a key role for clinical quality registries in driving clinical quality improvement in the Australian health care system.

The evaluation of the progress and outcomes of the project strongly supports the importance of adopting *Operating Principles and Technical Standards* to guide existing or establish new clinical quality registries.

The final *Operating Principles and Technical Standards* developed through the project will require national endorsement and ownership by Australian Health Ministers to provide the necessary ongoing authority for their adoption and uptake to drive clinical quality improvement across the Australian health system.

The Commission is highly respected and well placed to provide overarching national leadership and governance required to develop a national approach to clinical quality registries based on the final *Operating Principles and Technical Standards* agreed through this project.

Conclusion 1: The evaluation of the Australian Clinical Quality Registry project demonstrated overall that the project was highly successful in testing and validating the draft *Operating Principles and Technical Standards* for clinical quality registries.

The six pilot registries funded by the Commission valued and benefited from testing and validating the draft *Operating Principles and Technical Standards*. Through their involvement in the project the pilot registries provided a number of soundly based insights into the potential operation of a registry whose principal purpose is to improve the safety and quality of clinical care. The project also confirmed a key role for clinical quality registries in driving clinical quality improvement in the Australian health care system.

The evaluation of the progress and outcomes of the project strongly supports the importance of adopting *Operating Principles and Technical Standards* to guide existing or establish new clinical quality registries.

The final *Operating Principles and Technical Standards* developed through the project will require national endorsement and ownership by Australian Health Ministers to provide the necessary ongoing authority for their adoption and uptake to drive clinical quality improvement across the Australian health system.

The Commission is highly respected and well placed to provide overarching national leadership and governance required to develop a national approach to clinical quality registries based on the final *Operating Principles and Technical Standards* agreed through this project.

Recommendation 1: The Commission build upon the successful outcomes of the Australian Clinical Quality Registry project to further advance and provide national
leadership for the establishment and maintenance of clinical quality registries to drive clinical quality improvement in the Australian health care system.

Conclusion 2: The key attribute of a clinical quality registry is to use the information it collects and reports on for the purpose of improving the safety or quality of health care.

The draft *Operating Principles and Technical Standards* defines a clinical quality registry “as a particular subset of clinical registers”.

It also states: “The purpose of a clinical quality register is to improve the safety or quality of health care provided to patients by collecting key clinical information from individual healthcare encounters which enable risk-adjusted outcomes to be used to drive quality improvement”.

The distinction between a clinical quality registry and other types of registries is important to know and understand. The key attributes of a clinical quality registry are articulated in the first seven *Operating Principles*.

Operating Principle 1 (OP1) concerning the need for clinical quality registries to have clear and precisely defined purposes related to safety and quality (as we recommend below) is fundamental to a registry being equipped to operate as a clinical quality registry, as opposed to a registry primarily used for the purpose of research or clinical audit. Achievement of this attribute is also contingent on compliance with other closely related *Operating Principles* and associated *Technical Standards*.

In this regard, compliance with OP1 should be seen as pivotal to qualifying as a clinical quality registry for governance and/or funding purposes.

Recommendation 2: The requirements for being a clinical quality registry need to be made explicit in the final *Operating Principles and Technical Standards* documentation. OP1 in particular needs to state purposes directed at improving the quality or safety of patient care. Compliance with OP1 should be a mandatory requirement for a clinical quality registry.

Conclusion 3: A number of issues and barriers identified by the pilot registries during the project have impacted on their ability to fully implement, test and validate the draft *Operating Principles and Technical Standards*.

The issues and barriers most frequently mentioned during the project include:

- timeframes too short to establish the pilot registry and to fully test and validate the draft *Operating Principles and Technical Standards*
- project scope and funding of the pilot registries
- ethics and ethics approval processes problematic and slow
- difficulties in establishing governance arrangements to ensure effective clinical and technical buy-in to the operation of the registry as a clinical quality registry
- technical complexity of the standards and capability of the registry teams to test and validate the draft *Operating Principles and Technical Standards*
- local institutional IT requirements and cost implications in implementing technically complex IT systems, eg for interoperability

Not all of the above barriers will continue beyond the conclusion of the project. However, specific issues in relation to ethics approval processes, governance and clinical leadership, ongoing resourcing of clinical quality registries, and national IT
infrastructure and technical capability are likely to be ongoing issues and barriers to the establishment and maintenance of clinical quality registries.

Recommendation 3: The Commission consider how to strengthen support for clinical quality registries in relation to ethics approvals based on opt-out consent; national governance to support clinical leadership; on-going resourcing; and IT infrastructure and capability to ensure future clinical quality registries can fulfil their purpose in improving the safety and / or quality of health care.

Conclusion 4: The majority of Operating Principles were supported by the pilot registries, albeit with some qualifications in relation to certain health conditions and interventions. Support for the Technical Standards was less straightforward.

By the end of the project, the pilot registries overall had reported comprehensively about the Operating Principles, indicating support for, or compliance with, the majority of the principles. Support for the Technical Standards was less straightforward due to their perceived complexity, but also lack of technical capability in the majority of the pilot registry teams.

In particular, the technical standards were viewed as either too complex, difficult to understand and/or too ‘blue sky’. Others however indicated that the suggested standards were useful, even though some present ‘green fields’ standards around which associated developments and/or industry experience is lacking or still emerging.

Pilot registries expressed the view that the draft Operating Principles and Technical Standards document and Standards Map did not provide a clear ‘road-map’ for registry managers to choose the standards most suitable for their registry, compounding further the difficulties they had experienced in understanding the technical information within the standards.

Despite these differing opinions, collectively the lessons learned from the pilot registries have been substantial and provide a firm foundation for recommending the scope and form of the final Operating Principles and Technical Standards to be adopted for clinical quality registries.

Recommendation 4: The final Operating Principles and Technical Standards to be adopted should confirm the core principles for a clinical quality registry as well as clarify the relationship of operating principles to related technical standards. The latter would be best achieved through separation of the final Operating Principles and Technical Standards document into stand alone, but adequately referenced, documents.

Conclusion 5: Overall the adoption of all of the recommended technical standards provided in the Standards Map was limited, with the majority of pilot registries only testing and validating up to Level 2 in the NEHTA architecture.

The perceived complexity of the Technical Standards, and the need to access high level technical support during the project, did impact on the extent to which the pilot registries were able to test all the standards, especially those required at higher levels within the NEHTA architecture.

By virtue of this, the ability for the evaluation to fully assess the efficacy, feasibility and indicative cost effectiveness of all the technical standards recommended in the standards map was also limited.

Recommendation 5: The Commission consider how the final Operating Principles and Technical Standards could provide clearer guidance and explanations about the required technical aspects of establishing a clinical quality registry to assist future
registries to adopt, test and validate standards, including for NEHTA Level 3 and above.

Conclusion 6: Given the range of views of the pilot registries in relation to the NEHTA architecture, constraints in existing IT environments and the general perception of a need for strong IT support in relation to the technical standards, a case has emerged that new clinical quality registries will require access to external IT expertise and guidance to fulfil the expectations of NEHTA level 3 and above. The substantive reasons given by the majority of the pilot registries for limited adoption, testing and validation of the technical standards recommended in the Standards Map, related largely to:

- local institutional IT requirements, and
- the cost implications to the registry in implementing new and/or more technically complex IT systems across contributing sites to achieve higher levels within the NEHTA architecture.

All but one of the pilot registries see the achievement of NEHTA Level 3 or above as not feasible in the short to medium term. The readiness or lack thereof of the Australian health system for higher level interoperability was challenged by all of the pilot registries. They believed there are few health facilities with the technical knowledge or capacity to cooperate with a NEHTA level 4 registry.

Generally the registries see the NEHTA architecture as too futuristic against the existing broader health IT environment, with diversity of IT information systems that are not conducive to achieving interoperability.

Recommendation 6: The Commission consider the feasibility of providing, or engendering support for, external IT expertise and guidance to clinical quality registries to fulfil the expectations of NEHTA level 3 and above.

Conclusion 7: Changes to the draft Operating Principles and Technical Standards documentation will provide the necessary guidance for new or existing registries to operate effectively and thereby enable health care processes/pathways and patient outcomes to be measured and used to improve the safety and quality of health care.

The evaluation of the outcomes of the project in relation to testing and validating the draft Operating Principles and Technical Standards for clinical quality registries suggests that the current version of the draft Operating Principles and Technical Standards document has not necessarily assisted the pilot registries to adopt, test and validate the principles and standards uniformly and consistently.

The recommended changes to the draft Operating Principles and Technical Standards made by the pilot registries have been assessed and documented in section 5 and Attachment B of this report in light of their justification for a particular change. If in our view the change did not strengthen a registry in relation to OP1 in particular, or was too or not prescriptive enough, we have made alternative suggestions to ensure internal consistency in the final Operating Principles and Technical Standards. The detailed recommended changes in relation to the final Operating Principles and Technical Standards document are provided in Section 5 and Attachment B.

Recommendation 7: The Commission consider the proposed changes to the draft Operating Principles and Technical Standards documentation based on the evaluation of the outcomes of the pilot registries in testing and validating the principles and standards during the project.
In summary, the suggested changes to the draft *Operating Principles and Technical Standards* include:

- the final *Operating Principles and Technical Standards* should be separated into stand-alone, but adequately referenced documents
- a number of principles could be strengthened through refinement of the wording of the *Operating Principle* itself (see below) and/or qualification of the supporting text, and
- a number of typographical corrections are required.

One particular issue with the wording of *Operating Principles* concerns the extent to which they are presented as mandatory for an Australian Clinical Quality Registry. The words ‘must’ and ‘should’ appear to have been used to impart mandatory or conditional expectations in relation to compliance with each *Operating Principle*. We propose that an explanation be placed early in the document to make clear that ‘must’ signals a mandatory obligation on Australian Clinical Quality Registries to comply, whereas ‘should’ makes compliance conditional on circumstances that a non-compliant Australian Clinical Quality Registry has an obligation to explain.

In the light of this clarification, we have reviewed the use of ‘must’ and ‘should’ in the wording of all 42 *Operating Principles* and recommend that the following additional *Operating Principles* be mandatory, and thus be reworded:

- Operating Principle 1
- Operating Principle 2
- Operating Principle 4
- Operating Principle 15
- Operating Principle 22
- Operating Principle 23
- Operating Principle 29 – replace ‘needs to’ with ‘must’
- Operating Principle 30
- Operating Principle 33
- Operating Principle 34 – replace 3 instances of ‘should’ with ‘must’
- Operating Principle 36
- Operating Principle 37

Other proposed rewording of *Operating Principles* for which we make specific recommendations for change is as follows:

1. Australian Clinical Quality Registries must be developed with clear and precisely defined purposes aimed at improving the safety and/or quality of health care.

3. Data collected by Australian Clinical Quality Registries should be confined to items which are epidemiologically sound, i.e. simple, objective, reproducible, valid (including for risk adjustment) and related to a specific case definition.

8. The collection of data for an Australian Clinical Quality Registry should maintain an appropriate balance between the time and cost of data collection and its impact on patient care, particularly where clinicians are directly involved in data collection, and must not be an unreasonable burden or incur a cost to consumers.

15. Australian Clinical Quality Registries must collect sufficient patient-identifying information to support the registry’s stated purpose. Most
clinical quality registries would require individually identifiable data, for which use of national Individual Healthcare Identifiers is recommended.

23. Australian Clinical Quality Registries must have a robust quality assurance plan which allows ongoing monitoring of the completeness and accuracy of the data collected.

39. Clinicians and/or staff at contributing units should have the capacity to undertake ad hoc analyses of their data to enable monitoring of clinical care.

Other changes are detailed in the completed Summative Evaluation Framework at Attachment B to the Operating Principles.

As a minimum, we also recommend that references and brief guidance about the relevance of the specific Technical Standards in column 2 of the following table should be added to the text discussion of the Operating Principles listed in column 1.

<table>
<thead>
<tr>
<th>Operating Principle</th>
<th>Related Technical Standard(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Data collected by Australian Clinical Quality Registries should be confined to items which are epidemiologically sound, i.e. simple, objective, and reproducible.</td>
<td>Clinical Communications - Data Specifications</td>
</tr>
<tr>
<td>4. Methods used to collect data in Australian Clinical Quality Registries should be systematic, with identical approaches used at the different institutions contributing information.</td>
<td>Clinical Communications – HL7</td>
</tr>
<tr>
<td>11. Standard definitions, terminology and specifications should be used in Australian Clinical Quality Registries wherever possible to enable meaningful comparisons to be made and to allow maximum benefit to be gained from linkage to other registers and other databases (if approved by relevant ethics committees, etc.).</td>
<td>Clinical Communications – Terminology and Data Specifications</td>
</tr>
<tr>
<td>12. Australian Clinical Quality Registries must use data dictionaries when they are established to ensure that a systematic and identical approach is taken to data collection and data entry. They need to publish eligibility criteria, metadata, data dictionaries, etc.</td>
<td>Clinical Communications – Data Specifications</td>
</tr>
<tr>
<td>13. To avoid duplicating data capture, Australian Clinical Quality Registries use data from existing data sources, including administrative data, where they are of a satisfactory quality</td>
<td>Clinical Communications – HL7 Secure Messaging – Web Services</td>
</tr>
<tr>
<td>14. Australian Clinical Quality Registries should have the capacity to enhance their value through linkage to other disease</td>
<td>Unique Healthcare Identification – Health Care Client Identification</td>
</tr>
<tr>
<td>Operating Principle</td>
<td>Related Technical Standard(s)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>and procedure registers or other databases.</td>
<td>Clinical Communications – HL7</td>
</tr>
<tr>
<td>15. Australian Clinical Quality Registries should collect individually identifiable patient or subject information.</td>
<td>Unique Healthcare Identification – Health Care Client Identification</td>
</tr>
<tr>
<td>19. To protect register data, Australian Clinical Quality Registries must utilise secure access controls and secure electronic transfer and electronic messaging systems.</td>
<td>Identity Management Secure Messaging</td>
</tr>
<tr>
<td>21. Institutional policy principles set out in Part B: Technical standards should be met.</td>
<td>Engagement and Adoption</td>
</tr>
</tbody>
</table>
Attachment A – Draft *Operating Principles and Technical Standards* for Australian Clinical Quality Registries
Operating Principles and Technical Standards for Australian Clinical Quality Registries

November 2008
The Australian Clinical Quality Registries project is one of the Australian Commission on Safety and Quality in Health Care’s Information Strategy. For more information about the Information Strategy visit the Commission’s website: http://www.safetyandquality.gov.au

The draft Operating Principle and Technical Standards for Australian Clinical Quality Registries have been developed in collaboration with the NHMRC Centre for Research Excellence in Patient Safety (CRE PS) at Monash University and the National E-Health Transition Authority (NEHTA). They have also benefited from external consultation and input from a range of clinicians, speciality groups and registry custodians.

TRIM record 20308

© Copyright 2008 Australian Commission on Safety and Quality in Health Care. Reproduction, adaptation, or translation of this document without prior written permission is prohibited, except as allowed under the copyright laws.
Table of contents

Introduction .. 1
 - Purpose and scope of this document .. 3
 - Audience .. 3
 - Outcomes .. 3
 - Using this document ... 4
 - Gaps in current knowledge ... 5
 - Context ... 7
 - Determining the quality of our health care system ... 7
 - Measuring quality ... 8
 - Role of Australian Clinical Quality Registries ... 11
 - Monitoring and improving the quality of health care .. 11
 - Evolution of registries .. 12

Part A: Operating Principles ... 14
 - Summary of Operating Principles ... 14
 - Attributes of Australian Clinical Quality Registries .. 14
 - Attributes of Australian Clinical Quality Registries .. 18
 - Purpose ... 18
 - Collect a core minimum data set ... 19
 - Collect epidemiologically sound data elements.. 19
 - Uniformly collect data ... 20
 - Ascertainment and follow-up .. 20
 - Selection bias ... 22
 - Data collection .. 24
 - Data capture tools .. 24
 - Timeliness .. 27
 - Standardised data elements .. 27
 - Data dictionaries ... 28
 - Existing data sources ... 29
 - Record linkage ... 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data elements</td>
<td>33</td>
</tr>
<tr>
<td>Identifying information</td>
<td>33</td>
</tr>
<tr>
<td>Key clinical information</td>
<td>34</td>
</tr>
<tr>
<td>Process of care measures</td>
<td>34</td>
</tr>
<tr>
<td>Outcome measures</td>
<td>35</td>
</tr>
<tr>
<td>Risk adjustment</td>
<td>36</td>
</tr>
<tr>
<td>Data security</td>
<td>38</td>
</tr>
<tr>
<td>Secure data housing</td>
<td>38</td>
</tr>
<tr>
<td>Authentication</td>
<td>39</td>
</tr>
<tr>
<td>Secure transfer and messaging</td>
<td>39</td>
</tr>
<tr>
<td>Data quality</td>
<td>40</td>
</tr>
<tr>
<td>Ascertainment</td>
<td>41</td>
</tr>
<tr>
<td>Accuracy</td>
<td>41</td>
</tr>
<tr>
<td>Timeliness</td>
<td>43</td>
</tr>
<tr>
<td>Organisation and governance</td>
<td>44</td>
</tr>
<tr>
<td>Corporate and clinical governance</td>
<td>44</td>
</tr>
<tr>
<td>Accreditation</td>
<td>45</td>
</tr>
<tr>
<td>Governance structures</td>
<td>45</td>
</tr>
<tr>
<td>Addressing quality of care</td>
<td>48</td>
</tr>
<tr>
<td>Data custodianship</td>
<td>49</td>
</tr>
<tr>
<td>Research use</td>
<td>49</td>
</tr>
<tr>
<td>Ethics and privacy</td>
<td>51</td>
</tr>
<tr>
<td>Legislation and guidelines</td>
<td>51</td>
</tr>
<tr>
<td>Consent</td>
<td>53</td>
</tr>
<tr>
<td>Research</td>
<td>54</td>
</tr>
<tr>
<td>Qualified Privilege</td>
<td>55</td>
</tr>
<tr>
<td>Outputs</td>
<td>57</td>
</tr>
<tr>
<td>Data analysis</td>
<td>57</td>
</tr>
<tr>
<td>Reporting</td>
<td>62</td>
</tr>
<tr>
<td>Resourcing</td>
<td>65</td>
</tr>
</tbody>
</table>
Table of contents

Framework for Analysing, Planning and Implementing Identity Management v1.0 ... 107
Identity Management Resource Set .. 108
Australian Government Authentication Framework 109
ACSI 33 .. 110
Security techniques .. 110
OASIS eXtensible Access Control Markup Language (XACML) TC 111
OASIS Security Services (SAML) TC v2.0 ... 112
* Secure messaging .. 113
 Web services ... 113
 XML .. 114
* Supply chain ... 115
* Engagement and adoption ... 116
 Understanding standards .. 116
 Corporate governance of ICT .. 116
* References .. 118

Checklist .. 126

Glossary ... 128
Clinical registers are databases that systematically collect health-related information on individuals who are:

- treated with a particular surgical procedure, device or drug, e.g. joint replacement;
- diagnosed with a particular illness, e.g. stroke; or
- managed via a specific healthcare resource, e.g. treated in an intensive care unit.

Clinical quality registers are a particular subset of clinical registers (Figure 1). The purpose of a clinical quality register is to improve the safety or quality of health care provided to patients by collecting key clinical information from individual healthcare encounters which enable risk-adjusted outcomes to be used to drive quality improvement. Clinical quality registers can provide the most suitable and accurate method of providing monitoring and benchmark data and, where applicable, offer the greatest potential to improve health care performance across institutions and providers. Clinical quality registers should be focused on conditions and procedures where outcomes are thought to vary and where improvements in quality have the greatest capacity to improve quality of life and/or reduce costs.

The system or organisation governing the register is known as the registry.¹

Figure 1. Clinical registers and clinical quality registers

Clinical registries are established and operated with the aim of improving patient care and outcomes through greater understanding of events, treatments and outcomes. The data collected by a registry over time are analysed and used to identify positive and negative trends and these analyses can be used, generally by clinicians, to lead to improvements in practice, and in medication and device usage.
There are a number of existing clinical registries and these are funded from a range of sources. Some registries are clearly contributing to valuable improvements in clinical practice and health outcomes and have strong support and participation rates within the relevant clinical profession. However, the existing clinical registries are quite variable; both in their ability to improve health care and in the quality of the information they hold and publish. They currently operate in a fragmented and inconsistent environment.

An Australian Clinical Quality Registry is a registry whose purpose is to improve the safety or quality of health care provided to patients. Australian Clinical Quality Registries build on data collected from events in daily health care and use this information to assess care provision and implement quality improvements where required.

It has been noted that:

- No national standard exists against which funding applications by clinical registries can be written or assessed.
- No routine processes exist to ensure that clinical registries improve safety and quality. For example, many registries take a significant period of time to collate data, reducing their ability to provide timely information to health care providers and to support clinical quality assurance and improvement.
- Registry processes, data and technology are neither uniform nor standardised, creating significant inefficiencies and hampering interoperability with other information systems.
- Some registries collect data items that do not conform to national definitions, thereby limiting the utility and comparability of the data.
- Data quality, including completeness, is often compromised. Some registries seek information from the routine administrative collections to determine completeness or to match data with administrative collections (including hospital statistics or deaths) to extend or validate the registry information.
Purpose and scope of this document

The Australian Commission on Safety and Quality in Health Care, the NHMRC Centre of Research Excellence in Patient Safety and the National E-Health Transition Authority (NEHTA) have collaborated to develop these operating principles and technical standards for Australian Clinical Quality Registries. These are registers that are:

- (potentially) national in coverage; and
- primarily focussed on supporting improvement in clinical practice, particularly clinical safety and quality.

A core function of Australian Clinical Quality Registries must be that they have the ability to improve clinical practice and health outcomes and be capable of accurately capturing the state of health care in Australia. For registers to meet their full potential in informing the state of health care in Australia, confidence is needed in the quality and relevance of the data. This document outlines a series of guidelines for the operation of Australian Clinical Quality Registries designed to help them achieve these goals.

Their purpose is to:

- Provide a means of improving existing clinical registers and enhancing the value of the information they provide;
- Provide guidance for the establishment and maintenance of new Australian Clinical Quality Registries aiming to measure quality of care; and
- Suggest a best practice model to which both new and existing Australian Clinical Quality registries should adhere.

Audience

These Operating Principles and Technical Standards are aimed at assisting those involved with or contemplating the development of clinical registries. This document is designed to assist:

- Organisations involved in the funding of clinical registers whose purpose includes the monitoring and/or benchmarking of quality of care;
- Individuals and organisations responsible for interpreting data derived from clinical registers; and
- Researchers and stakeholders contemplating the development of new Australian Clinical Quality Registries.

Outcomes

Australian Clinical Quality Registries complying with the principles and standards outlined in this document would:

- Have a clear purpose and scope
- Adhere to a standard governance model (including ethical standards and effective processes to ensure the clinical use and relevance of the registry)
Introduction

- Adhere to privacy principles and legislation
- Adhere to information management principles, including publication of eligibility criteria and metadata
- Adhere to a uniform recommended technology approach (referring to standards rather than prescribing specific hardware or software)
- Use a standard technical design and leverage national infrastructure (where available) for key registry components to improve efficiency and security, to reduce cost of development and to increase comparability and interoperability of registries
- Involve the relevant national professional organisations, for instance in the areas of data custodianship and clinical practice advice
- Routinely analyse data and provide timely advice to clinicians and relevant stakeholders
- Provide annual reports which would include the registry’s methods of altering practice and evaluating change
- Add value over and above that achievable through augmentation of existing routine data collections.

Using this document

This document sets out the operating principles and technical standards with which an Australian Clinical Quality Registry should generally comply.

This document has two major parts:
- Part A: Operating Principles; and
- Part B: Technical standards.

Part A: Operating Principles describes the principles that should be used to govern the structure, governance and operations of Australian Clinical Quality Registries.

Part B: Technical standards describes the technical standards that should be used in the development and operation of Australian Clinical Quality Registries.

The two parts are complementary and highly inter-related. Use of the technical standards makes the attainment of many of the operating principles more readily achievable.

Part B: Technical standards has two sections:
- Part B: Technical standards – Architecture overview – gives architectural context and vision for the short-term but also elucidates a longer term vision of how Australian Clinical Quality Registries may contribute to an e-health enabled healthcare system.
- Part B: Technical standards – Standards Map– lists existing technical standards that developers and managers of Australian Clinical Quality Registries should be aware of and, where appropriate, implement and comply with.
Gaps in current knowledge

The role and position of Australian Clinical Quality Registries needs to be defined within the context of the broader safety and quality effort. We need to better understand:

- where Australian Clinical Quality Registries fit in the context of other quality and safety activities currently being used throughout the health system;
- what criteria should be used to assess whether a registry should be implemented over an alternative approach; and
- what synergies exist between registries and other safety and quality activities. For example, it may be that registry data can be used as part of the national accreditation standards or national performance indicators.

In addition to understanding how registries fit into the wider quality and safety movement, the ways in which quality can be measured by registries and used to drive system improvement needs further research. The use of pre-determined quality process and outcome indicators, soundly based on the literature or at least on consensus judgements of experts, and embedded into registries is one approach to measuring quality.

In considering what measures to use to assess performance, clinical quality registries need to ensure they adhere to their purpose and avoid ‘scope creep’. While measuring outcomes are important, in some situations there are limitations in only using direct outcome measurement, such as when there are long time lapses before outcomes are measurable, or when numbers are small, or there are questions about the adequacy of risk stratification, or about confounding.

Comparing patterns of care against best practice guidelines or protocols, either evidence based or developed through expert consensus, may be regarded as a proxy for direct outcome measures in some circumstances. Data on care patterns are more immediately available and may be less vulnerable to misinterpretation through random error or confounding. Viewed together with direct outcome measures, they can strengthen the evidence and indicate why outcomes may be sub-optimum. These process measures can also be used in research studies of associations of treatment with outcomes as a basis for setting/adapting care standards. Apart from care patterns, emphasis also may be placed on the performance of prosthetic devices, and registries used to locate people with prostheses that are subject to recall. In addition, apart from outcomes of care, complication rates and toxicity may be monitored to more broadly assess care safety and quality.

In addition to understanding what to measure, more work is needed to identify how data can be used to drive change at the clinical interface. Evidence suggests that quality improvement is driven by the production of outputs such as quality indicators from clinical registries and routine feedback to providers, teams within institutions, professional accreditation/auditing bodies, and the public. These outputs might include warning signals which trigger when performance falls below pre-determined...
levels. The use of these data by multidisciplinary teams might facilitate quality improvement activities by identifying areas of need and assessing performance relative to efforts to improve care.

Registry managers need to identify the technical methods available for presenting data for quality appraisal and action. They also need to consider the importance and role of unexplained variance and outliers. How are small numbers that are vulnerable to random error addressed? How can the data be presented graphically or otherwise for ready interpretation by funders, service providers and consumers? What is the human environment needed to gain change? Where do the data fit with accreditation and credentialing? An Australian Clinical Quality Registry must focus on the use of registry data for clinical practice improvement and the importance of data use for system as well as individual practice improvement.

Australian Clinical Quality Registries have a key role in the monitoring and improvement of the quality and safety of Australian healthcare. They potentially provide a strong evidential base for determining the efficacy, safety and quality of providers, interventions, medications, devices and treatments. Many of the gaps in knowledge we have identified will be addressed over the next few years as Australian Clinical Quality Registries are further developed and examined in the context of the wider quality and safety agenda. This document provides the principles by which Australian Clinical Quality Registries can be developed to produce credible information and governed effectively to ensure that data is used effectively to drive quality improvement. The structures and governance of an Australian Clinical Quality Registry form a nexus that connects clinicians, administrators, peak bodies, jurisdictions and consumers. These connections can be used to build confidence and transparency in Australian health care and help ensure that our activities are focused on the patient.

An Australian Clinical Quality Registry must demonstrate potential for significant impact and relevance on quality and safety. The improvement should be expected to commensurate to cost and effort. The data collected, the subject matter or ‘content’ of a registry should be clearly relevant to clinical practice.
Context

Determining the quality of our health care system

It is presently very difficult to measure the quality of care delivered by Australian hospitals and health services. On the few internationally comparable statistics, such as life expectancy and perinatal mortality, Australia ranks favourably against most other countries. For example, the life expectancy of Australians ranks among the top five nations in the world. However, these measures are heavily impacted by social circumstances that have little to do with the quality of health care delivered. Furthermore, despite these favourable results, there have been ongoing concerns that the quality of health care may not be of a uniformly high standard. The basis of this concern includes:

- The results of the Australian Quality in Health Care Study conducted in the early 1990s which revealed that adverse events were recorded at 16% of hospital admissions, with 51% of them considered preventable. While there are inherent recognised biases and inconsistencies when attempting to determine preventability, few would disagree that the extent of harm occurring in hospitals constitutes a significant problem. No subsequent large scale medical review has been repeated since this study was completed more than 15 years ago.

- A number of high profile cases of alleged sub-standard care at major Australian hospitals, most of which had occurred after some years of unaddressed concern. In the majority of these cases even very basic measurement and benchmarking would likely to have identified problems well before they reached a crisis point.

- Increasing evidence of substantial geographical variability in the care provided by some specialty areas within the Australian health sector.

- Limited evidence from administrative data suggesting considerable variability between hospitals in one jurisdiction in meeting quality indicators across a range of clinical areas including medical, surgical, mental health and obstetrics and gynaecology domains.

In general, there has been very little systematic measurement of any aspect of health care in Australia. Most of the strategies designed to improve quality rely on qualitative approaches associated with such process as credentialing, medical record review, clinical audit, autopsy, incident reporting, coronial investigation, health complaints, hospitals accreditation, practice guidelines and patient satisfaction surveys. Emerging methods include the use of clinical indicators and statistical control charts.

Without a credible system for monitoring outcomes within institutions there is little opportunity for managers or boards of management to be aware of how their services truly compare with those elsewhere or with pre-determined standards. Inquiries into adverse events have criticised the lack of a system for early detection of error and proactive monitoring of the system.
The general lack of systematic measurement of the quality of the health system is analogous to trying to monitor an organisation’s financial status without having financial data. The focus on clinical registers as tools to measure quality of care in an epidemiologically robust manner is part of an attempt to address these concerns.

Measuring quality

The Institute of Medicine (IoM) defines quality as the “degree to which health services for individuals and populations increase the likelihood of desired health outcomes and are consistent with current professional knowledge.” More nuanced definitions, incorporating elements such as appropriateness of care, cultural sensitivity, consumer satisfaction and experience, have subsequently been advanced.

In 1988, Donabedian proposed an approach for determining how to measure the quality of clinical care. Quality, he believed, could be measured by assessing either the processes of care or the outcomes of care. A third relevant component of quality is the structure or organisation of the clinical setting.

Process indicators refer to the specific activities undertaken as part of the provision of care. They may include the use (or non-use) of various drugs and procedures or aspects of the organisation of care, for example, door to needle time for thrombolysis. Process measures can be used as measures of quality of care by comparing treatments given with recommendations in published guidelines or other standards.

Process measures are appropriate measures of quality of care for chronic illnesses such as in heart disease and diabetes when the long lag time between provision of care and the outcome diminishes the value of an outcome register. An example of the use of process measures to improve quality of care is provided by the US-based *Get With The Guidelines* program in which compliance with best practice for management of patients suffering stroke and heart disease is measured and benchmarked.

Outcome indicators are measures used to assess the ultimate effects of treatments on health status. In ideal circumstances outcomes would be the only relevant measure of quality of care. However, there are only a limited number of healthcare interventions where the outcome occurs reasonably soon after the intervention and is predominantly determined by the quality of a defined episode of care. In most cases these are surgical or other procedural activities and it is in these situations where outcome measures have their greatest value. Clinical registries provide their distinctive contribution to quality improvement through their role in measuring and benchmarking outcomes. It is also recognised that outcomes can be given explanatory context and supporting evidence from process measures.

Structural indicators are used to describe the attributes of a setting in which care occurs and the instrumentalities of which it is the product. It may also include administrative and related processes that support and direct the provision of care. Structural determinants of quality of care include the adequacy of the building and equipment, the qualifications of the staff and credentialing systems in place to monitor this on an ongoing basis, and whether systems exist to systematically monitor care delivery.
Table 1 outlines some of the advantages and disadvantages of collecting outcome and process measures to assess the quality of care (after Willis et al.22).

<table>
<thead>
<tr>
<th>Outcome indicators</th>
<th></th>
<th>Process indicators</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td></td>
<td>Advantages</td>
<td></td>
</tr>
<tr>
<td>Integrate the impact of all factors influencing a patient’s clinical course</td>
<td>Applicable only when outcome follows relatively soon after intervention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meaningful to patients, clinicians and funders</td>
<td>Applicable only when outcome is substantially influenced by the intervention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective method to investigate performance of proceduralists</td>
<td>Can be vulnerable to small numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td></td>
<td>Disadvantages</td>
<td></td>
</tr>
<tr>
<td>Applicable only when outcome follows relatively soon after intervention</td>
<td>Applicable only when outcome is substantially influenced by the intervention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicable only when outcome is substantially influenced by the intervention</td>
<td>Can be vulnerable to small numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can be vulnerable to small numbers</td>
<td>Commonly requires risk adjustment to enable benchmarking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commonly requires risk adjustment to enable benchmarking</td>
<td>Often require direct contact with patients to ascertain outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Often require direct contact with patients to ascertain outcomes</td>
<td>May be insensitive to occasional egregious events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May be insensitive to occasional egregious events</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Outcome and process indicators

Another approach used to measure quality of care is to determine performance amongst various dimensions of quality. Those most commonly used were proposed by the Institute of Medicine (IOM)18 who recommended that health care be assessed according to the following criteria:

- **Safety**: avoiding injuries to patients from care that is intended to help them;
- **Effectiveness**: providing services based on scientific knowledge to all who could benefit and refraining from providing services to those not likely to benefit;
Introduction

- **Patient-centred**: providing care that is respectful of and responsive to individual patient preferences, needs, and values and ensuring that patient values guide all clinical decisions;
- **Timeliness**: reducing waits and sometimes harmful delays for both those who receive and those who give care;
- **Efficiency**: avoiding waste, including waste of equipment, supplies, ideas and energy; and
- **Equity**: providing care that does not vary in quality because of personal characteristics such as gender, ethnicity, geographic location and socioeconomic status.

Australian Clinical Quality Registries provide an effective means by which to measure these aspects of care.
Role of Australian Clinical Quality Registries

This section describes the role of Australian Clinical Quality Registries, particularly in terms of how they can contribute to monitoring and improving Australian health care.

Monitoring and improving the quality of health care

An Australian Clinical Quality Registry must focus on the use of information to lead to clinical improvements in terms of safety and quality. Progressive extension of the scope and purpose of a clinical registry is to be avoided as it has been suggested such ‘creep’ undermines support and participation.

Clinical registries identify and investigate sub-optimum and variations in processes and clinical outcomes. Factors leading to such variability and sub-optimum practice can then be investigated further, often with targeted studies, with the ultimate aim of improving patient care. They can drive quality improvement in many ways: indirectly through the fostering of competition, or more directly through evaluating compliance with best practice guidelines and through informing policy areas such as regulation and pricing policy. Where data are collected on devices, registries also have a role to play in post-market surveillance and notification. Where they have been introduced at a state or national level, registries have become one of the most clinically valued tools for quality improvement.

Registries improve care, in part by arming clinicians with information about how their outcomes benchmark with standards and other clinical outcomes, both locally and (sometimes) internationally. As long-term data repositories, registers have the ability to capture data on conditions or events which occur sporadically or rarely among populations. Longitudinal data also provide an ability to act as an early warning system if quality deteriorates.

A high quality of registry data provides credible information which engages the common desire of clinical teams to be the best. These data also provide the potential for units to learn from those with the best results. However, they can require considerable investment, and therefore should be focused on conditions and procedures where outcomes are thought to vary and where improvements in quality have the greatest capacity to improve quality of life and/or reduce costs.

Data output must be regarded as credible by clinicians if it is to drive change in practice. The introduction of teaching in epidemiology and biostatistics in undergraduate training across multiple health-related disciplines has meant that clinicians are increasingly astute at discerning the quality of information collected and reported in the literature. Data used to monitor the quality of care must be capable of taking into account the basic requirements of accuracy and reproducibility that underpin reliable clinical data. This, in turn, requires adherence to national standards and procedures typical of those widely utilised in clinical research activities.
Having good quality data is not, in itself, sufficient to improve quality of care. Systems must be in place to ensure that data is analysed in a timely manner with clinical interpretation on findings, and then fed back to appropriate personnel/bodies to ensure that appropriate action occurs. Register data should inform clinical practice, policy development and resource allocation.

The ultimate beneficiaries of clinical registries are patients, who will receive safer care. Data collected by registries should be made available to consumers in a manner that allows them to participate fully in decisions about their care. The role of consumers as stakeholders and in the governance of the system is an important. Consumers are more likely to support Australian Clinical Quality Registries if there is a sense of inclusion and a role for them in the governance and as recipients and beneficiaries of the analyses and reports. The opportunities for patients to know about the registry and its roles are fundamental considerations.

To maintain credibility and support of health professions the data should avoid providing information that is not of a high quality and has not had clinical interpretation, especially where this involves contrasts in the outcome results of different clinical service providers. Ongoing review is typically necessary to find the most appropriate output formulation. Attention must also be paid to reducing possible negative consequences of making data available without adequate disclaimers, and the potential to cause perverse incentives to occur such as the avoidance of ‘difficult’ cases.

Evolution of registries

Many of the major clinical registries established in Australia were initially developed as research resources, and have relied on the leadership of small groups of innovative clinicians and their practice specialties. This process has lead to Australia having some world leading registries, albeit mostly with limited funding and fragile governance processes.

The value of some clinical registers has been limited by such factors as unnecessarily extensive collection of data, poor quality control, inadequate governance procedures, and lack of provision of an appropriate level of funding to operate registries, or lack of linkage to an effective operator arm for gaining quality improvement in clinical practice. These often reduce their value for clinical quality improvement. With registries increasingly seen as a key driver of quality improvement, it is necessary to consider new approaches to the funding, organisation, and information and technical aspects of these resources.

With the increasing development of clinical registries, it is important that systematic consideration be given to issues such as minimum data sets, register governance, basic quality control and ethical issues.
Registries require considerable investment to develop and sustain. However, this cost needs to be matched with the costs savings and/or health quality improvements gained from the information supplied. For example, the National Joint Replacement Registry captures information on revision rates following hip and knee surgery. Over the past four years the proportion of hip and knee procedures that are revisions has declined from 14.8 to 11.1% and from 10.4 to 7.9% respectively. These declines are in large part attributable to monitoring systems incorporated into the registry design which detects poorly performing prostheses. The annual cost saving has been estimated at $44.6 million.24 The cost of running the Registry is $1.5 million per annum.

To maximise the return on investment in registries, it is most beneficial to target diseases or procedures where there is likely to be variable and sub-standard performance and where poor outcomes may lead to poor quality of life or an increase in cost. An example could be renal transplantation where poor outcomes lead to patients having to revert to haemodialysis, providing a much inferior quality of life at considerably greater cost to the community.

Existing clinical registries have sometimes been limited as a result of the following factors:

- A lack of timely reporting, with some registries taking significant periods of time to provide reports;
- A lack of routine procedures for providing feedback and gaining improvement on the safety and quality of care;
- A variable and sometimes inadequate approach to governance;
- Variable approaches to data audit, especially with regard to the completeness of recruitment of the eligible population and assessments of the accuracy of the data collected.

In addition, there is no system in Australia to identify registers that have been developed. Furthermore, the data collection processes and technology are neither uniform nor standardised, creating significant inefficiencies and hampering their ability of registries to interact with each other and with other information systems. Finally, there are no national standards against which funding applications by clinical registries can be written or assessed.
Part A: Operating Principles

Anyone developing and implementing an Australian Clinical Quality Registry should be cognizant of the principles described here. It is not intended as a prescriptive list that every registry must comply with. Given the scope and purpose of a given Australian Clinical Quality Registry a varying subset of these principles may be relevant.

This part of the document provides recommendations on the development and implementation of new and existing Australian Clinical Quality Registries. They should be read in conjunction with the Part B: Technical standards – Architecture overview and Part B: Technical standards – Standards Map sections.

Summary of Operating Principles

The following principles have been developed to provide a sound basis to underpin the establishment of future registers. The purpose of guidelines are to help clinicians and patients reach the best health care decisions. Guidelines recognise that specific circumstances may require a flexibility or range of approaches, as against standards that mandate a specific approach. ²

This section summarises the principles for Australian Clinical Quality Registries. The following sections provide further details.

Attributes of Australian Clinical Quality Registries

1. Australian Clinical Quality Registries should be developed with clear and precisely defined purposes.

2. For Australian Clinical Quality Registries to provide the maximum value to the health system they should focus their core data collection on the essential elements required to serve their main purposes.

3. Data collected by Australian Clinical Quality Registries should be confined to items which are epidemiologically sound, i.e. simple, objective, and reproducible;

4. Methods used to collect data in Australian Clinical Quality Registries should be systematic, with identical approaches used at the different institutions contributing information.

5. Outcome determination should be undertaken at a time when the clinical condition has stabilised and the outcome can therefore be reasonably ascertained.

6. In determining the time to outcome assessment, Australian Clinical Quality Registries must consider the burden and cost of data collection together with the likelihood of loss to follow-up.

7. Australian Clinical Quality Registries must ensure that complete registry data are collected from the eligible population.
Part A: Operating Principles

Data collection

8. The collection of data for an Australian Clinical Quality Registry must not impact on the provision of health care and should not be a burden or incur a cost to consumers.

9. Data capture should be performed as close as possible to the time and place of care by appropriately trained data collectors;

10. Data should be uniformly and easily accessible from the primary data source.

11. Standard definitions, terminology and specifications should be used in Australian Clinical Quality Registries wherever possible to enable meaningful comparisons to be made and to allow maximum benefit to be gained from linkage to other registers and other databases (if approved by relevant ethics committees, etc.).

12. Australian Clinical Quality Registries must use data dictionaries when they are established to ensure that a systematic and identical approach is taken to data collection and data entry. They need to publish eligibility criteria, metadata, data dictionaries, etc.;

13. To avoid duplicating data capture, Australian Clinical Quality Registries use data from existing data sources, including administrative data, where they are of a satisfactory quality;

14. Australian Clinical Quality Registries should have the capacity to enhance their value through linkage to other disease and procedure registers or other databases.

Data elements

15. Australian Clinical Quality Registries should collect individually identifiable patient or subject information.

16. Where patterns or processes of care have an established link to outcomes and process measures are simple, reliable and reproducible, they should be considered for collection by Australian Clinical Quality Registries.

17. Where possible, outcomes should be assessed using objective measures. Where this is not possible, outcome should be assessed by an independent person and undertaken using standardised and validated tools.

Risk adjustment

18. Australian Clinical Quality Registries should collect objective, reliable co-variates for risk adjustment to enable factors outside the control of clinicians to be taken into account by using appropriate statistical adjustments.

Data security

19. To protect register data, Australian Clinical Quality Registries must utilise secure access controls and secure electronic transfer and electronic messaging systems.

20. The collection, storage and transmission of clinical registry data must be in line with relevant legislation and guidelines.
21. Institutional policy principles set out in Part B: Technical standards should be met.

Ensuring data quality

22. Australian Clinical Quality Registries should report as a quality measure the percentage of eligible patients recruited to the registry.

23. Australian Clinical Quality Registries should have a robust quality control plan which allows ongoing monitoring of the completeness and accuracy of the data collected.

24. Australian Clinical Quality Registry data should be checked in a sample of cases. This usually involves audit against source records. The sample size needs to be sufficient to produce reliable measures of data completeness and accuracy. The frequency of audits needs to be sufficient for data quality lapses to be identified promptly. Incomplete or inaccurate data should be identified by the data centre and remedied as soon as possible.

25. Australian Clinical Quality Registries should incorporate in-built data management processes such as data range and validity checks.

26. Australian Clinical Quality Registry reports should be produced according to a strict timeline and should be appropriately funded to enable this to occur.

Organisation and governance

27. Australian Clinical Quality Registries must formalise governance structures to ensure accountability, oversee resource application, provide focus and optimise output from the registry.

28. Australian Clinical Quality Registries must establish policies to manage a range of contingencies arising from the analysis of data from the registry, which includes a formal plan ratified by the Steering Committee to address outliers or unexplained variance, to ensure that quality of care issues are effectively addressed and escalated appropriately.

Data custodianship

29. Custodianship of clinical register data needs to be made explicit in Contracts and/or Funding Agreements.

30. Data access and reporting policies for Australian Clinical Quality Registries should be made available to persons wishing to use register data.

31. Third parties wishing to access data and publish findings must seek approval from the Steering Committee and obtain relevant Institutional Ethics Committee endorsement where identified or re-identifiable data or contact with patients is sought.

Ethics and privacy

With the exception of instances where data collection has been mandated through legislation or enabled through regulation or legislation:

32. Institutional Ethics Committee (IEC) approval must be obtained to establish the Australian Clinical Quality Registry.
33. Registry personnel should be familiar with and abide by the requirements set out in relevant privacy legislation, the *National Statement on Ethical Conduct in Human Research* and the *Australian Code for the Responsible Conduct of Research*.

34. Participants or their next of kin should be made aware of the collection of register data. They should be provided with information about the Australian Clinical Quality Registry, the purpose to which their data will be put and provided with the option to not participate. This should be at no cost to the registry participant.

35. Where projects are undertaken using register data, IEC approval must be sought unless the project falls within the scope of an institution’s quality assurance activity.

Information output

36. Data from Australian Clinical Quality Registries should be used to evaluate quality of care by identifying gaps in best practice and benchmarking performance.

37. Australian Clinical Quality Registries must report without delay on risk-adjusted outcome analyses to institutions and clinicians.

38. Australian Clinical Quality Registries should verify data collected using a formalised peer review process prior to publishing findings.

39. Local clinical register database managers should have the capacity to undertake ad hoc analyses of their data to enable monitoring of clinical care.

40. Australian Clinical Quality Registries must produce a publicly-accessible aggregated annual report detailing clinical and corporate findings.

41. Australian Clinical Quality Registries must have documented procedures for reporting on quality of care, including addressing outliers or unexplained variance.

Resources and funds

42. Australian Clinical Quality Registries should be appropriately funded to allow data collection, reporting and the institution of strong quality control procedures.
Part A: Operating Principles

Attributes of Australian Clinical Quality Registries

For clinical registries to be regarded as important tools for monitoring the quality of care, they should:

1. Collect data to serve a predetermined purpose;

2. Collect a core minimum data set of information about individuals treated in multiple locations;

3. Collect data that are epidemiologically sound, i.e. simple, objective, reproducible

4. Collect data easily and uniformly from the data source;

5. Collect outcome data from all or nearly all patients at a time when outcome is considered to be stable;

6. Collect sufficient clinical information to enable basic risk adjustment; and

7. Adopt an ‘all or none’ policy, i.e. units report data from all patients treated (where data collection is ethically permissible) if they wish to participate in the register to avoid introducing selection bias into the register population.

Each of these is described in greater detail in the following sections.

Purpose

When establishing an Australian Clinical Quality Registry, it is important at the outset to understand what questions the stakeholders may want answered through the register, both immediately and in the future.²⁵

For Australian Clinical Quality Registries to provide the maximum value to the health system they should focus their core data collection on the essential elements required to serve their main purposes. This will be determined by the core tasks of the registry. These may include activities ranging from the benchmarking of outcomes to compliance with guidelines or the monitoring of device safety.

While the purpose of the register may evolve as the registry is developed and implemented, it should be noted that broad changes in the purpose of a register will likely have a cascading effect on all dependent components of registry process and outputs.²⁶ For example, if the purpose of a register changes from a desire to assess the quality of clinical care provided to patients to one which primarily monitors service provision, then it is likely that data collection processes will change to reflect the change in direction. A greater focus will likely be placed on identifying tests and procedures while concomitant reduction in effort will likely be placed on assessing process and outcome measures.

Some common purposes for which clinical registers are established include:

- To monitor safety and quality of products and treatments;
- To determine clinical and/or cost effectiveness of treatment (including drugs, devices and procedures) across a population;
To identify differences in the quality of care across a population and monitor this over time;

To provide an infrastructure on which intervention studies can be established with relative ease;

To provide information about incidence and prevalence and its variability (over time and place); or

To identify new preventive opportunities for the disease or condition being studied.

Collect a core minimum data set

Some early clinical registers were designed as clinical research activities with extensive data requirements that have left an impression that contributing to registries is a highly burdensome task which is impractical to sustain long term. Ongoing collection of clinical data across multiple locations can be expensive and can be difficult to maintain unless it is simple and incorporated into routine clinical care. For this reason, it is important that Australian Clinical Quality Registries collect only the bare minimum of easily obtained data necessary to supplement ancillary administrative data systems to accomplish their task.

Clinical registers are sometimes referred to as a ‘data-spine’ of core essential information. Additional collections over limited time frames can be added (as and when funding is available) to delve more deeply into specific questions.

As a general rule, the core information will include sufficient identifying information to allow a patient to be contacted for assessment of outcomes and for possible linkage to different databases. It will also include essential information about the condition or procedure leading to inclusion on the clinical register and information about co-morbidities or other factors needed for risk adjustment. In order to be used as a quality improvement tool, registries should consider collecting data to monitor adherence to important best practice principles. Simple outcome data are also required. Each of these issues is discussed in greater detail in Data elements on page 33.

Collect epidemiologically sound data elements

The core data set from an Australian Clinical Quality Registry must consist of data elements that are recorded in the same way using identical definitions across different institutions, and that different observers would record the information identically.

Age, sex, ICD codes are examples of epidemiologically sound information. By contrast, the saturation level of oxygen in the blood on admission to hospital is not epidemiologically sound because there is currently no standardised procedure under which it is measured.

Within Australia, METeOR is considered the authoritative repository for data standards as well as a strategic repository for other data standards. A similar concept has been developed to define terms specific to conditions and diseases and in other specialty areas.
Part A: Operating Principles

Uniformly collect data

Data elements must be capable of being easily and uniformly collected from the primary data sources at every site. For this reason, consideration needs to be given to the manner in which data elements can be collected systematically when registers are developed. The format in which data is captured should be standardised to enhance its ability to link with other databases. The National e-Health Transition Authority (NEHTA) has determined that within Australia there should be a standard exchange format for data. This will be based on the Health level 7 (HL7) family of standards. For further information, refer to Part B: Technical standards.

Over time, it should be possible to collect the essential data elements from administrative or routinely collected electronic data. This has the potential to greatly reduce costs and improve data quality. This is discussed further in the Data collection section.

Currently, the variability in hospital information technology systems and the lack of systematic recording of essential clinical data make this an aspiration rather than a short-term goal. It is necessary therefore for many registries to collect a significant proportion of clinical data from the written hospital records, typically by transfer onto web-based data entry screens by data collectors.

The manual component of data collection is currently the major limiting step in establishing new registers and explains why it is feasible to contemplate new Australian Clinical Quality Registries for only a limited number of conditions where differences in quality can have major impacts on quality of life or cost.

Ascertainment and follow-up

Outcome determination is the most fundamental requirement of an Australian Clinical Quality Registry and should be undertaken at a time when the clinical condition has stabilised and the outcome can therefore be reasonably ascertained.

Some clinical registries collect data only for a short time period, such as for a single episode of care (e.g. most infection surveillance registries), while others follow patients until they no longer present for treatment (e.g. Australian Bleeding Disorder Registry) or die (e.g. Australian Cystic Fibrosis Data Registry).

In the case of renal transplantation this may involve long-term follow-up monitoring for organ rejection. In the case of severe trauma a six month follow-up is needed for clinical stability to be measured. Shorter time frames may be appropriate in other settings, such as in the Intensive Care Unit where treatment survival to 30 days is commonly used. In general, measures which include functional or quality of life outcomes provide the most ideal measures.
Out of hospital outcomes are commonly determined by contacting participants at a defined time after discharge and asking a small number of key questions. An example is a questionnaire which classifies patients after stroke into three categories (dependent, independent with residual problems, and independent with no problems) using two simple questions. Contact by phone may require considerable effort to find individuals and for this reason most registries undertaking this form of follow-up would collect information about a person’s doctor, closest friend and closest relative to facilitate follow-up. Where telephone follow-up is impractical data linkage to other records may be an alternative. (For further information, refer to Record linkage.). This could include using the National Death Index where death by cause of death is an outcome of interest.

The outcome should be determined for the highest possible proportion of patients, i.e. 100% if at all possible. Otherwise, there is a high potential for biased results and, possibly, for manipulation. In situations where outcomes are not measurable on most participants it is questionable whether the expense of establishing a register is worthwhile. The length of follow up and the extent that outcome data is collected will depend on factors such as:

- **Cost**: Follow-up of patients via personal contact is particularly costly;
- **Burden**: The preparedness of patients to provide data is limited and easily exhausted. However in most cases the essential information can be obtained in a few simple well-planned questions;
- **Loss to follow-up**: In many instances, the greater the delay before outcome assessment the greater the likely loss to follow-up and the greater the risk of bias. Those patients missing from follow-up may be expected to differ from those who remain in contact. A number of studies have demonstrated that people with poor outcomes are less likely to participate in follow-up and that the longer the time lapse the greater the cumulative loss;
- **Clinical stability**: In most situations it is necessary to wait until the outcome of a treatment or procedure has stabilised before an outcome can be measured. In many cases, particularly with surgical interventions this may be within several days, once the relief of symptoms can be assessed and the period during which the patient is at risk of major complications has passed. In other cases, such as with severe trauma, it may be necessary to wait for six months or so until clinical stability is reached.

Table 2 lists some example of outcomes collected by existing clinical registries.

<table>
<thead>
<tr>
<th>Registries</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian and New Zealand Dialysis and Transplantation Registry</td>
<td>Survival</td>
</tr>
<tr>
<td></td>
<td>Survival of the transplanted organ</td>
</tr>
<tr>
<td>Australian Joint Replacement Registry</td>
<td>Prosthesis revision surgery</td>
</tr>
<tr>
<td>Australian Bone Marrow Transplant Recipient Registry</td>
<td>Mortality</td>
</tr>
<tr>
<td></td>
<td>Disease-free survival</td>
</tr>
</tbody>
</table>
Table 2 Examples of outcomes collected

<table>
<thead>
<tr>
<th>Registries</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victorian State Trauma Registry</td>
<td>In-hospital mortality
6-month mortality
6-month quality of life / return to work / function / pain</td>
</tr>
<tr>
<td>Australian Corneal Graft Registry</td>
<td>Graft survival
Visual outcome</td>
</tr>
<tr>
<td>Australian and New Zealand Intensive Care Unit Society (ANZICS) Adult Patient Database</td>
<td>In-hospital mortality</td>
</tr>
<tr>
<td>Victorian Infection Control Nosocomial Infection Surveillance System (VICNISS)</td>
<td>Healthcare-associated (iatrogenic) infection</td>
</tr>
</tbody>
</table>

Selection bias

For Australian Clinical Quality Registries to ensure good quality data, meticulous attention must be afforded to ensuring that complete data are collected on all patients and that all eligible patients within a defined clinical population are included in the register. If clinical registries collect an incomplete set of patients from a clinical unit strong biases may occur. This would be most apparent if a unit reported only those patients with a favourable outcome (‘cherry-picking’ or ‘gaming’).

In general, no service should be allowed to contribute to a register unless they are prepared to allow all of their eligible patients to be reported. Selection bias (the purposeful or inadvertent exclusion of patients from inclusion) is best avoided through careful consideration of the recruitment strategy employed by the registry. Recruitment rates are typically low where eligible participants volunteer to participate in registers.\(^{34}\)

Biases potentially created by incomplete reporting are best addressed by ensuring that the consent process facilitates inclusion of all patients into the clinical register and by having quality control processes in place that monitor the fraction of eligible patients reported to the registry. In general, no clinical area should be allowed to report cases unless they are prepared to allow all of their patients to be eligible for inclusion.
Summary

Australian Clinical Quality Registries should possess the following attributes:

- Australian Clinical Quality Registries should be developed with clear and precisely defined purposes;
- For Australian Clinical Quality Registries to provide the maximum value to the health system they should focus their core data collection on the essential elements required to serve their main purposes;
- Data collected by Australian Clinical Quality Registries should be confined to items which are epidemiologically sound, i.e. simple, objective, and reproducible;
- Methods used to collect data in Australian Clinical Quality Registries should be systematic, with identical approaches used at the different institutions contributing information;
- Outcome determination should be undertaken at a time when the clinical condition has stabilised and the outcome can therefore be reasonably ascertained.
- In determining the time to outcome assessment, Australian Clinical Quality Registries must consider the burden and cost of data collection together with the likelihood of loss to follow-up.
- Australian Clinical Quality Registries must ensure that complete registry data are collected from the eligible population.
Data collection

Data elements incorporated into Australian Clinical Quality Registries must be chosen to allow the essential variables to be collected with minimal burden. Data collection must not impact on the primary purpose of the health care visit/interaction which is for the provision of health care, nor must it be a burden or cost, time or financial, to the consumer. Data collection is made easier when information is recorded in clinical records or electronic databases in a standardised manner and is easily accessible.

Because registries collect information on a continuous basis, each data element requiring manual extraction adds significantly to the cost and potentially reduces the quality of the clinical register as a whole. For further information, refer to Part B: Technical standards.

Data capture tools

Data capture should be performed as close as possible in time to the relevant care event as this provides the best opportunity to ensure that all fields can be accurately completed. Missing data items are difficult to capture retrospectively, and it becomes even more difficult the further collection is removed in time from the care event.

Information for inclusion in an Australian Clinical Quality Registry is best collected from those parts of the medical record where data items are collected systematically, e.g. from pathology reports. The development of nationally uniform approaches, such as the recently introduced uniform national inpatient medication chart and structured pathology reporting, are a valuable aid to this type of data collection. This type of data can often be supplemented with information gained by placing a ‘stamp’ in a patient’s notes or providing a brief data-collection form to be completed immediately after a procedure.

Commonly used approaches for data collection include paper-based forms, web-based data entry and personal handheld computers (Figure 2).
Figure 2. Data flows for clinical quality registries

The choice of which system to use will often be determined by where the data are captured and what resources are available in particular clinical settings, e.g. access to computers. Many registries use a hybrid of paper data collection forms and electronic data entry. Methods for optimising data collection from patients require further evaluation. Table 3 outlines some issues for consideration when collecting data using paper and electronic data capture tools.
Paper-based data capture

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generally cheap to produce and forms are (usually) easily accessible</td>
<td>Transmission of paper forms to a central register may pose a security risk unless special arrangements are made (registered mail)</td>
</tr>
<tr>
<td>Transportable, therefore often favoured by clinicians</td>
<td>Storing of forms can be cumbersome and expensive in the longer term</td>
</tr>
<tr>
<td>Sending paper forms centrally for entry into the register can provide more consistent coding by specialist data entry clerks and economies of scale for personnel, equipment and expert input</td>
<td>Potential for forms to be lost/misplaced</td>
</tr>
<tr>
<td></td>
<td>Requires double data entry which is time consuming and expensive</td>
</tr>
<tr>
<td></td>
<td>Time delay in receiving data can impact on the timeliness of data being available to clinicians</td>
</tr>
<tr>
<td></td>
<td>Easy to leave fields blank (incomplete data) which impacts on data quality</td>
</tr>
</tbody>
</table>

Electronic data capture

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data is entered (potentially) only once thereby reducing opportunity for data entry / transcription error</td>
<td>Requires resources and expertise to establish the data entry form and provide ongoing maintenance of the system</td>
</tr>
<tr>
<td>Can incorporate various range and consistency checks to reduce data entry error</td>
<td>Computers and electronic data capture tools (if used) are required in contributing institutions</td>
</tr>
<tr>
<td>Produces an audit trail</td>
<td>If system is browser-based, then it requires access to the world wide web in order to transmit data centrally</td>
</tr>
<tr>
<td>Lends itself to automatically capturing data from other data sources (where this exists and is of good quality) through data linkage</td>
<td>Transmission of data CDs/DVDs to a central register may pose a security risk unless special arrangements are made (registered mail). Encryption and other procedures should be used to secure the data.</td>
</tr>
<tr>
<td>Can be customised to minimise blank fields</td>
<td>Potential for data entry errors (but may be less than non-electronic capture methods)</td>
</tr>
<tr>
<td>If changes are to be made to the dataset, these can be done centrally and adopted into practice almost instantaneously where web-based systems are used</td>
<td></td>
</tr>
<tr>
<td>Enables strong security and auditing</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Paper and electronic data capture
Part A: Operating Principles

Other aspects to consider with data collection include:

- Adequacy of training of data collectors, particularly encompassing the interpretation of data definitions, and adherence to the principles of good research practice (this can be complicated as many ‘data collectors’ are also clinicians);
- Supervision of data collectors at all stages of the data collection process;
- Security of confidential data; and
- Procedures to ensure that data are only used in ways agreed with those who provided it.

Timeliness

To be effective in driving change, clinical registries should:

- Collect data shortly after their occurrence and as close as possible in time to the point of care; and
- Provide reports as soon as possible after the episodes of care.

Delayed reporting lessens the clinical value of register data because it can be argued that the circumstances leading to the findings no longer apply. An appropriate approach may be to provide a brief and immediate summary followed by a more detailed report after final checking and analysis. It is recognised that different registries may have varying conceptions of timeliness due to the clinical condition being addressed.

Standardised data elements

Where standard data elements and definitions exist for diseases and conditions, these should be used. The National e-Health Transition Authority (NeHTA) developed *Part B: Technical standards – Standards Map* to complement this section. In it, they outline the suite of data specifications that have been developed to standardise various clinical concepts and foster interoperability in the health care settings. Table 4 outlines some established data standards and specifications to assist in ensuring the terminology is used consistently in the clinical and information technology context.

<table>
<thead>
<tr>
<th>Data standard / specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Classification of Diseases (ICD)</td>
<td>International standard for classifying diseases and other health problems recorded on health and vital records. ICD-10AM is currently used in Australia.</td>
</tr>
<tr>
<td>National Health Data Dictionary (METeOR)</td>
<td>METeOR is Australia’s repository for national data standards for health, housing and community services statistics and information.</td>
</tr>
<tr>
<td>NeHTA National Products Catalogue (NPC)</td>
<td>The National Product Catalogue (NPC) will become the source and main repository of data for public health institutions seeking to purchase medicines, medical devices and other healthcare items. The NPC is a data repository - of product and pricing information.</td>
</tr>
<tr>
<td>Data standard / specification</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT) | SNOMED CT is a comprehensive and precise clinical reference terminology. SNOMED CT presents clinically relevant information consistently, reliably and comprehensively as an integral part of producing electronic health records. SNOMED CT operates at many levels including history, examination, provisional diagnosis, test results, and treatment.

Table 4 Data standards/specifications

Where standard definitions do not exist, terminology used within clinical disciplines should be used and clearly defined in the clinical register and by all data contributors. When different registries collect data about a common event, (e.g. blood transfusion) this should be done using uniform definitions and approaches, even if the extent of the data collection differs amongst the different registries (i.e. some registries may collect more extensive data about transfusion than others).

Even with the use of standard definitions, it is likely that registries operating over a long period of time will be faced with the possibility that data elements will change as systems and databases are revised. For example, in translating the International Classification for Diseases from the 9th to the 10th version a number of changes were made. It is expected that ICD 11 will be released in 2015. Registries need to consider the impact that these changes will have on collection and interpretation of findings within institutions over time. For further information, refer to Part B: Technical standards.

Data dictionaries

The methods used to collect data in registers should be systematic, with identical approaches used at the different institutions contributing information. Australian Clinical Quality Registries should maintain detailed documentation of all procedures. This should include a data dictionary, which is a catalogue of all data elements held in a database. The objectives of a data dictionary are to:

- Establish a core set of uniform definitions relating to the field;
- Promote uniformity, availability, reliability, validity, consistency and completeness in the data;
- Accord with nationally and internationally agreed protocols and standards, wherever possible; and
- Promote the standard definitions by making them readily available to people involved in the collection and use of the data from the data source.
Data dictionaries are a critical component of a registry and should be developed as the database is built. They typically contain a description of each element in the registry, the source of the variable, coding information and normal ranges if present.

The development of clinical registry data dictionaries should be overseen by each Registry Steering Committee (for further details refer to Organisation and governance on page 44). The data dictionary should be reviewed at least annually to ensure that it is up-to-date. Changes to the data dictionary should be ratified by the Steering Committee. Many registries publish their data dictionaries in the public domain, often on their website. Some examples include:

NEHTA recommends the establishment of a central portal for the publication of metadata. For further information, refer to Part B: Technical standards.

Existing data sources

Data items in clinical registers are usually obtained directly from the clinical record or through specifically designed data capture forms (or both). It may sometimes be possible to supplement this directly collected data with administrative data (defined as data primarily collected for funding and other administrative purposes, not for assessing quality of care). Examples of administrative data include hospital admitted episode databases and billing sources.

Existing clinical systems, such as laboratory, operating theatre, radiotherapy and emergency department systems, may also be viewed as potential sources of data.

Administrative data offer the advantage of being systematically collected and likely to be available at lower cost. In a limited range of circumstances administrative databases have been shown to approximate outcomes obtained using registers. However, variability in hospital information technology systems and coding practices and the lack of recording of essential clinical data make the exclusive use of administrative data to measure quality problematic.

Prior to establishing a clinical quality registry, and periodically throughout the life of the registry, there is a need for the registry Steering Committee to determine:

- whether the quality of administrative data is sufficient for the intended purpose to negate the need for the registry
whether it is possible to improve the quality of administrative data such that they can be used to supplement registry data e.g. if they don’t contain the required detail, can they be broadened to do so?

With further investment in improving the quality of datasets and in the establishment of electronic medical records, administrative data may add another dimension to the ability of registries to monitor quality of care. This will be further enhanced by investment in developing linkage options.

An Australian Clinical Quality Registry should attempt to leverage routinely collected or administrative data as much as possible where data are of a sufficient quality. Additionally, as the volume and/or quality or granularity of these collections changes, Australian Clinical Quality Registries should routinely re-evaluate their use of these data.

Record linkage

Currently there is no universal person identifier used in Australian health care. It is anticipated that by 2011 an Individual Healthcare Identifier (IHI) will be developed which will enable patients to be linked across multiple episodes of care with a high degree of certainty that it is the correct patient’s details being linked (for further information refer to the Unique Healthcare Identifiers (UHI) section on page 69). In the absence of an individual healthcare identifier, linkage often relies on ‘probabilistic matching’ rather than inherently more accurate ‘deterministic’ linking.

For datasets to be linked using probabilistic matching, demographic details including name (last, middle and first), date of birth and gender need to be collected.\(^53\) Because of unreliable reporting, non-uniqueness and changes over time, these fields are not always enough to definitively identify a person across multiple datasets and therefore are a potential source of inaccuracy.

Data linkage units have been or are being established across States and Territories in Australia to enable information housed in one database to be linked to other databases with due regard for data security and confidentiality concern.\(^54\)\(^55\) Data linkage enables a multitude of clinical and non-clinical data sources to be linked. Figure 3 provides an example of the various data sources which are linked in Western Australia.\(^56\)
There is considerable value to be gained by linking data from different sources. Each Australian Clinical Quality Registry should examine what opportunities exist to obtain broader safety and quality data through data linkage exists.

For example, linking Australian Clinical Quality Registries with the National Death Index provides a powerful tool to assess longer term outcomes which would otherwise not be feasible to collect. As another example, the linkage of the Victorian Cardiac Surgery Register with the Victorian Infection Control Nosocomial Infection Surveillance System Registry has made it possible to examine variation in the rate of surgical wound infections after cardiac surgery.17,18 Detailed linked data from these registries provides information that could not have been derived from either register alone.

Although linkage of data amongst different registers is often valuable, there are considerable challenges involved in linking register data with information from secondary data sources. These include:

- The need to comply with privacy and confidentiality constraints. Where data are linked, the minimum ethical and privacy standard that must be applied is the higher ethical and privacy standard;
- Possible uncertainty about the accuracy, completeness, reliability and validity of the secondary data source;
Part A: Operating Principles

- Difficulty in determining which data should be used when databases provide disparate information. A study by Parker et al demonstrated that, when a clinical cardiac surgery register was compared with an administrative database to identify coronary risk factors, there was poor agreement (as reflected by a kappa score of less than 0.4) for the following fields: presence of morbid obesity, acute renal failure, heart block, dysrhythmia, and mitral insufficiency.\(^{59}\)

- The lack of standardised definitions used across databases. The ability to link data is particularly problematic when databases do not use consistent language or definitions; and

- Cost associated with undertaking data linkage, which are rarely built into registry budgets.

Currently we are limited in our knowledge of the registers that have been developed, and of their attributes. There is a need to establish a register of clinical registries, in much the same way as has already been done in the UK\(^{64}\) and recently trialled in Australia.\(^{60}\)

Summary

With regard to data collection, the following principles should be observed:

- The collection of data for an Australian Clinical Quality Registry must not impact on the provision of health care and should not be a burden or incur a cost to consumers;

- Data capture should be performed as close as possible to the time and place of care by appropriately trained data collectors;

- Data should be uniformly and easily accessible from the primary data source;

- Standard definitions, terminology and specifications should be used in Australian Clinical Quality Registries wherever possible to enable meaningful comparisons to be made and allow maximum benefit to be gained from linkage to other registries and other databases (if approved by relevant ethics committees);

- Australian Clinical Quality Registries must use data dictionaries when they are established to ensure that a systematic and identical approach is taken to data collection and data entry. They need to publish eligibility criteria, metadata, data dictionaries, etc.;

- To avoid duplicating data capture, Australian Clinical Quality Registries use data from existing data sources, including administrative data, where they are of a satisfactory quality;

- Australian Clinical Quality Registries should have the capacity to enhance their value through linkage to other disease and procedure registries or other databases.
Data elements

Information collected by Australian Clinical Quality Registries may be regarded as a data-spine which other specific studies can be attached to, rather than a collection of comprehensive data suitable for answering a large range of possible future questions. As a result of the need to have a minimalist approach to data collection, it is recommended that the process of deciding on the core dataset be undertaken by a team which includes clinical experts, health informaticists and epidemiologists. Data elements need to be carefully considered in relation to the purpose for establishing the registry.

Because the success or failure of a clinical registry is often determined by the burden of data collection, clinical registries should focus on collecting:

- Identifying information;
- Key clinical information; including information required for risk adjustment and for measuring aspects of care delivery;
- Process of care measures; and
- Outcome data.

Identifying information

Individually identifiable information (personal information) is defined in the Commonwealth Privacy Act 1988 (s6) as:

> Information about an individual whose identity is apparent, or can reasonably be ascertained, from the information or opinion.

Privacy Act 1988 (Cth) s6 61

Australian Clinical Quality Registries may need to collect individually identifiable patient or subject information for the following reasons:

- To enable outcome information to be collected when this requires personal contact with patients
- To enable linkage to administrative and/or other databases.
- To track people through multiple episodes of care and sometimes across multiple institutions; and/or
- To facilitate data quality checks to be undertaken, e.g. by comparing registry data with information held in medical records.

Identifying information may also be accompanied by other information to allow patients to be tracked into the future. For example, where longer term outcomes are required it may be appropriate for a registry to collect information about the individual’s next of kin, usual general practitioner and/or a friend.

Registries may also collect information capable of identifying the providers of clinical services, potentially including the identity of individual units and individual clinicians.
Identifiable and re-identifiable

Linkage of data from registers containing identifiable data to other data sources must be undertaken using procedures that ensure the confidentiality of an individual’s data. One approach to achieving this goal is to create a secondary or link key which can replace the identifying information prior to transmitting data to a third party for data file linkage.\(^{62}\) In effect, the link key enables identifying information to be removed before it is transmitted to a third party. The link key is unique to each specific individual and is used only for data linkage purposes. The link key should be retained in a secure database so that at a later stage the data can be re-identified if necessary.

Key clinical information

Key clinical information collected by a registry might include elements such as:

- Dates of admission/operation/discharge;
- Principal diagnoses and co-morbidities;
- Results of key diagnostic tests;
- Principal treatments provided;
- Elements of clinical care provided; and
- Information required for risk adjustment.

This type of information must typically be extracted from a patient’s clinical record or from specific data-collection forms completed during (or after) the patient’s treatment or may come from routinely collected or administrative data.

Process of care measures

In maximising the ability of Australian Clinical Quality Registries to improve quality of care, consideration should be given to measuring compliance with core best practice principles. For this to occur data must be reliable and reproducible. The patterns or processes of care measured should have established links to outcome. Examples of process measures include times from arrival in an emergency department to the administration of a definite treatment such as thrombolysis for stroke or an intervention for myocardial infarction. Analysis of these variables may provide useful information to examine the reasons for differences in outcomes.

Clinical quality registries established in Sweden provide excellent examples of how process measures can be incorporated into registers. The Swedish Stroke Quality Registry collects process measures to identify the:

- proportion of patients admitted to a stroke unit;
- proportion of patients who receive a CT scan;
- treatment in the acute phase and at discharge (= secondary prevention); and
- length of hospital stay.\(^{63}\)
Outcome measures

The type of outcome data collected will depend upon the purpose for which the register has been developed. It is sometimes necessary for the treating clinician to determine the outcome and in these circumstances it is important that, wherever possible, the outcome of interest be an objective measure such as transplanted organ survival or death.

In some instances objective outcomes measures are not possible, such as in the case of quality of life measurement. In these instances, standardised, validated, established tools such as the Health Survey Short Form12,64,65 or the SF-8 Health Surveys66 administered by an independent party might be appropriate.

Summary

With regard to determining data elements the following principles should be observed:

- Australian Clinical Quality Registries should collect individually identifiable patient or subject information;
- Where patterns or processes of care have an established link to outcomes and process measures are simple, reliable and reproducible, they should be considered for collection by Australian Clinical Quality Registries;
- Where possible, outcome should be assessed using objective measures. Where this is not possible, outcome should be assessed by an independent person and undertaken using standardised and validated tools.
Risk adjustment

In determining whether quality of care differs across health care settings, it is important to ensure that Australian Clinical Quality Registries adjust for variation in patient outcomes that result from differences in patient characteristics that are outside the control of the healthcare providers. Some clinical units attract patients whose conditions are more advanced or who are more prone to worse outcomes because of concomitant illnesses. When outcomes are compared amongst institutions or when attempts are made to investigate poor outcomes, it may be appropriate that these factors are taken into account by applying appropriate statistical adjustments. Risk adjustment is the statistical process of identifying and adjusting for variation in outcomes resulting from differences in patient characteristics or risk factors.

A challenge when undertaking risk adjustment is to identify the epidemiologically sound risk-related variables that have a fundamental impact on outcome and are easily accessible to the data collectors. Sometimes the most important variables which might account for differences in clinical outcomes are either not recorded systematically in clinical records or are not able to be easily extracted, resulting in very limited risk adjustment. In these situations comparative measures of clinical performance may be unsuited for any other purpose other than the identification of extreme ‘outliers’ or ‘unexplained variance’.

Determining the variables to be taken into account during risk adjustment requires judgment, since many potential adjustment factors are either difficult to measure accurately or may only be partly under the control of the treatment team. For example ‘cold ischaemia’ time (which refers to the length of time between harvesting a kidney from a donor and transplanting it in the recipient) is an important determinant of outcome after renal transplantation. It may be prolonged because of factors outside the control of the clinician.

Commonly only a few of the most obvious co-variates are suited for routine collection and usable as risk adjustment variables. This is one of the reasons why benchmarking comparisons are rarely precise.

An alternative to risk adjustment is to report data within individual risk strata. For example, renal transplantation is compared across institutions using patients regarded as having a low risk of rejection: those who are recipients of primary cadaveric grafts, non-diabetic, non-Aboriginal, non-Maori, non Pacific-Islander and aged between 20 and 54 years at transplant. However, this approach may have the disadvantage of eliminating from the benchmarking the more challenging cases, where outcomes are more likely to be variable and where trends in management need to be tracked.
Summary

With regard to risk adjustment the following principle should be observed:

- Australian Clinical Quality Registries should collect objective, reliable covariates for risk adjustment to enable factors outside the control of clinicians to be taken into account by using appropriate statistical adjustments.
Data security

In accordance with the Privacy Act first introduced in 1988, personal information collected on individuals must be held in a secure manner. While this Act initially related only to data collected on patients in the public health system it was extended in the Privacy Amendment Act (Private Sector) Act 2001 to also protect personal information held by private sector organisations. The following important documents developed by the National Health and Medical Research Council (NHMRC) provide guidance on the appropriate collection, storage and transmission of data:

- Guidelines to assist researchers in understanding their responsibilities under the Privacy Act 1988;[^67]
- Guidelines for genetic registers and associated genetic material;[^69]
- The Australian Code for the Responsible Conduct of Research[^70] (issued jointly with the Australian Research Council and the Australian Vice-Chancellors' Committee);
- The National Statement on Ethical Conduct in Human Research[^71] (issued jointly with the Australian Research Council and the Australian Vice-Chancellors' Committee).

Registry custodians must familiarise themselves with and ensure that they comply with their obligations under the Privacy Act and documents listed above. This will be further discussed below and in the `Ethics and privacy` section on page 51.

Secure data housing

As part of their governance procedures Australian Clinical Quality Registries are required to address issues relating to the storage of information during the life of the clinical register and after it has ceased to operate. Register data for an Australian-based registry should be stored in Australia. Where registries collect data from multiple institutions, there must be a policy and agreement established within each institution covering storage of data.

The Australian Code for the Responsible Conduct of Research provides principles of responsible and accountable research practice, and addresses the responsibility of institutions and researchers in the area of data and record management, publication of findings, governance and dealing appropriately with allegations of research misconduct.[^70] The Code dictates that:

- Data must be kept in a safe and secure storage place, even when not in use;
- Primary research records such as paper forms must be afforded the same level of protection as analysed research data;
- Data must be stored in a durable, indexed and retrievable form;
- A catalogue of data must be maintained in an accessible form; and
- Records must be maintained in accordance with ethical protocols and relevant legislation.
Fundamental aspects of secure data housing would include:

- Appropriate off-site backup procedures
- Disaster recovery procedures, including failover and redundancy
- Regular and adequate testing of all data security procedures.

A general principle is that registers holding information on Australians should maintain the register in Australia.

Authentication

Australian Clinical Quality Registries should be established with secure access controls to ensure that only authorised people have access to pertinent information on the database. The register must be password-protected at an individual level. An audit trail should exist to ensure that data cannot be tampered with in the absence of a process for tracking any changes made. For further information, refer to *Part B: Technical standards*.

Secure transfer and messaging

The transmission of data from the local clinical environment to the central register repository can occur via a web-based system, electronically or using a manual system (Figure 2). Principles of data transmission are that:

- Data should be transmitted in a secure manner. This includes encryption of data and access to data only after authentication is provided;
- Data transmitted via a postal system must be registered and addressed to a specific person who will take responsibility for ensuring the arrival of the data.

Where possible, every effort should be made to enable web-based transmission of data. An outline of security requirements for transmission of data are outlined in Figure 2 and are addressed in more depth in *Part B: Technical standards*. Importantly, transfer of data over the internet requires that data flowing between the browser, web server and the database server, should be encrypted to 128 bits via Secure Sockets Layer. For further information, refer to the *Part B: Technical standards*.

Summary

With regard to data security the following principles should be observed:

- To protect register data, Australian Clinical Quality Registries must utilise secure access controls and secure electronic transfer and electronic messaging systems.
- The collection, storage and transmission of clinical registry data must be in line with relevant legislation and guidelines;
- The institutional policy principles set out in *Part B: Technical standards* should be met.
Part A: Operating Principles

Data quality

The potential use of Australian Clinical Quality Registry data for benchmarking outcomes, providing volume quality assessment, assessing compliance with best practice guidelines, identifying preventive measures to reduce harm and undertaking outcome prediction and cost-benefit analysis will mandate the need for register data to be timely and accurate. To maintain the confidence of providers and consumers (and jurisdictions, funders and other stakeholders) in the accuracy and reliability of the information provided, Australian Clinical Quality Registries must have a robust quality assurance plan and regularly publish information demonstrating its effectiveness. Collection of data from widely dispersed sites is a well-established risk factor for poor quality (and sometimes fraudulent) data. A continuing focus on data quality is a fundamental requirement of an Australian Clinical Quality Registry.

Data quality assurance plans for an Australian Clinical Quality Registry must demonstrate:

- Completeness of population ascertainment;
- Accuracy of data provided to the Australian Clinical Quality Registry;
- Accuracy of data entry, coding and analysis; and
- Timeliness of data collection and reporting.

A similar approach has been taken in the United Kingdom where eleven quality criteria have been proposed against which databases including registries should be assessed. The criteria proposed are:

1. To what extent is the collection representative of the population at risk?
2. Which patient groups, if any, should be represented but are not?
3. How complete is recruitment of the eligible population?
 a. How and when was completeness last determined?
4. What variables are included in the database (Identifiers, condition, intervention, major known confounders, outcome)?
5. What percentage of variables are at least 95% complete?
 a. How and when was completeness last determined?
6. What percentage of variables have clear definitions laid out in a document such as a data manual?
7. What percentage of variables have clear rules on how to code them in the database laid out in a document such as a data manual?
8. How standardised is the coding for conditions and interventions?
 a. How and when was reproducibility last tested?
9. Was the person assessing the outcome independent and ‘blinded’?
10. To what extent are data validated?
11. Is there any bias associated with the outcome collected by the database?
Ascertainment

The proportion of eligible people entered onto the clinical register is a key quality measure which must be ascertained by determining the number of cases recruited on to the register as a proportion of all eligible cases from the participating institutions. This can be done by comparing the register holdings with external data sources. For example, numbers of patients entered into the cardiac surgery register should be regularly and at scheduled intervals, compared with numbers from administrative databases. This is likely to require periodic matching of register data against information held in local or external databases. Other approaches could include modelling and use of known prevalence or incidence data, modelling or comparison with existing administrative or payment databases, etc.

Accuracy

It must be recognised that data entry errors are not infrequent. One audit of data entered into an orthopaedic register in the UK identified that nearly 40% of records were incomplete. Data errors may be the result of:

- systematic (type 1) errors, e.g. programming errors, unclear or ambiguous definitions, violation of the data collection protocol; or
- random (type 1) errors, e.g. inaccurate data transcription and typing errors, illegible handwriting in the patient record.

Figure 4 illustrates some of the types and causes of data error identified in a review of data entered into a National Intensive Care Evaluation Registry. It demonstrates that data captured automatically was more accurate yet less complete than that captured manually.
Strategies to reduce systematic and random errors include:

- Establishing data dictionaries (see section 5.4);
- Establishing regular meetings with and shadowing data collectors to identify problems with and inconsistencies in data that has been collected;
- Providing ongoing training for data collection and coding;
- Cross-checking data with other data sources (‘triangulation’) to assist in determining data completeness; and
- Incorporating range and consistency checks in the data collection process.

In addition to back-end data cleaning and front-end logic checks of data, accuracy of information may be validated by field audits or by sending queries back to collecting institutions for assessment and clarification.
Field audits typically involve matching reported data with clinical records in a random sample of cases. This type of audit should cover all units reporting data, but may be targeted to areas where data quality problems have emerged or are suspected. Typically at least 1-2% of reported cases should be audited annually. The sample size needs to be adequate to produce reliable measures of data completeness and accuracy. Further, the audits need to be frequent enough such that data quality lapses are promptly identified. The value of audit is partly preventive, i.e. to signal to data collectors the importance of accuracy.

Completeness of data fields should be determined on a regular and frequent basis by the data management centre and be fed back immediately to data collectors to enable them to rapidly retrieve outstanding data items. Statistical reports of the performance of individual data collectors should also be provided to each individual involved.

Within the data centre, the accuracy of data entry from paper-based recording forms should also be regularly monitored using strategies such as double entry of a random sample of cases. This technique will identify whether data is interpreted differently by data entry staff.

Timeliness

Reporting timelines are important if the data from Australian Clinical Quality Registries is to have relevance to current clinical practice and to be effective in quality improvement. These should be agreed to as part of the registry funding agreement and monitored by the registry Steering Committee. Adherence to timelines however requires that a registry is supported with adequate funding and staff.

Summary

To ensure data quality, the following principles should be observed:

- Australian Clinical Quality Registries should report as a quality measure the percentage of eligible patients recruited to the clinical registry;
- Australian Clinical Quality Registries should have a robust quality control plan which allows ongoing monitoring of the completeness and accuracy of the data collected;
- Australian Clinical Quality Registry data should be checked in a sample of cases. This usually involves audit against source records. The sample size needs to be sufficient to produce reliable measures of data completeness and accuracy. The frequency of audits needs to be sufficient for data quality lapses to be identified promptly. Incomplete or inaccurate data should be identified by the data centre and remedied as soon as possible;
- Australian Clinical Quality Registries should incorporate in-built data management processes such as data range and validity checks;
- Australian Clinical Quality Registry reports should be produced according to a strict timeline and should be appropriately funded to enable this to occur.
Organisation and governance

This section describes the organisational and governance issues that any Australian Clinical Quality Registry needs to consider.

In most instances the registry should be a legal entity, possibly as a limited liability company, with a board including representation from clinicians, national peak bodies, jurisdictions, funders and consumers.

Corporate and clinical governance

Many registers were initially developed as research projects and consequently developed policies primarily designed to manage research data. However, with the increasing focus of registries on quality assurance and benchmarking, together with the rise of alternative sources of public (and/or private) funding, different approaches to governance and accountability are required. It is increasingly important that individuals involved in managing and overseeing an Australian Clinical Quality Registry are aware of their responsibilities and scope of practice. However, to date, no general guidelines for establishing and governing registries have been published in Australia.76

Australian Clinical Quality Registries must be able to demonstrate well-organised and well-documented governance structures incorporating representation from stakeholders, including consumers, clinicians, jurisdictions, funders, researchers, and policy developers. In demonstrating the application of good corporate and clinical governance, registries must:

- Be run efficiently;
- Meet their fiscal responsibilities;
- Operate within legal constraints, particularly with regard to data security and confidentiality;
- Meet corporate and clinical goals related to the purpose of the register;
- Monitor outcomes and deal appropriately with clinical issues arising from the data analysis;
- Be appropriately managed by people who have clearly identified roles and responsibilities. This includes having documented and standardised practices and procedures for data collection, lodgement, storage, and data management;
- Have established data access policies and procedures, for both registry staff and third parties; and
- Have processes for demonstrating the engagement and commitment of all relevant stakeholders.
One of the most important tasks of the governing body is ensuring that data output is reviewed on a regular and timely basis and that quality of care issues are addressed appropriately. Analysis of data must include a clinical interpretation of the findings. Australian Clinical Quality Registries must have in place a structured process for peer review and feedback to organisations that ensures that action is taken. The Steering Committee will be responsible for monitoring and ensuring that this occurs.

The challenges of clinical data collection, quality control, data security and statistical analysis will generally require that Australian Clinical Quality Registries be established in a strong research environment which has experience in maintaining large data sets. A registry should develop links to experts in the key areas of biostatistics, clinical medicine, quality, management and clinical epidemiology.

Accreditation

Institutions providing data to Australian Clinical Quality Registries should be acknowledged in the accreditation process. The support of medical colleges and other relevant specialty groups is also essential if a registry is to function effectively. Certain specialty groups strongly recommend that their members contribute to registers as part of their Continuing Professional Development (CPD) Program.

Australian Clinical Quality Registries are often useful in supporting training and credentialling by supplying data on numbers of procedures undertaken and associated outcomes, and through identifying institutions suitable for supporting training activities. In addition to being used at an institutional level, these data can also be used by individual clinicians to provide evidence of their experience and the quality of their work. Health insurers may also require a contribution to certain registers as part of their funding agreements.

Governance structures

The registry governance structure should comprise a Steering Committee, responsible for the clinical register and for promoting its activities. In addition, a Management Committee should be established to take responsibility for managing day-to-day aspects of the registry. Some registries use working parties to undertake targeted work in a given area. For example, working groups within an Infection Surveillance registry might focus on nosocomial pneumonia or surgical site infections in orthopaedics or paediatrics.

For some smaller registers, the role of the Steering Committee and Management Committee can be combined, provided that the group meets on a regular basis.

In addition to these structures, registries must have an independent complaints system in place to provide confidence that perceived misuse or inappropriate use of data can be investigated. In most institutions, the Institutional Ethics Committee (IEC) will undertake this role (for further information on the role and responsibilities of ethics committees refer to the *Ethics and privacy* section on page 51).
Steering Committee

A Steering Committee should be established to oversee the governance of the Australian Clinical Quality Registry and to maintain the confidence of all parties. Its focus should be on providing strategic direction and ensuring deliverables are met for the Australian Clinical Quality Registry. The specific roles of the Steering Committee are to:

- Provide oversight over all the Australian Clinical Quality Registry’s activities, including that of the management committee;
- Provide ongoing review of the objectives of the clinical register and the Australian Clinical Quality Registry’s effectiveness in meeting them;
- Establish policies to address issues of clinical interest or significance that may arise from time to time. These will include matters related to quality of care;
- Facilitate policy support for issues identified by the Management Committee;
- Provide advice on the Australian Clinical Quality Registry’s management, organisation, scope, development and funding;
- Monitor the quality of the Australian Clinical Quality Registry’s data quality management processes and timeliness of reporting;
- Develop and monitor policies for access to data and responses to quality of care issues identified;
- Review and advise on output from the clinical registry;
 - Review and provide comment on reports published by the Australian Clinical Quality Registry;
 - Provide advice on the collection and interpretation of data;
- Review all research and data requests for identified or identifiable data.
- Review publications arising from the Australian Clinical Quality Registry; and
- Review and advise on communication strategy, including communication with consumers.

The Steering Committee should meet more than once annually and have provision for the calling of extra ordinary meetings as required. Formal Minutes of meetings must be taken. Membership should comprise:

- Senior clinicians in a leadership role with the relevant specialty group;
- Representation from the funding body and/or appropriate jurisdiction;
- Senior staff from the Management Committee;
- Community or consumer representative(s);
- Any group involved in providing care in the subject area;
- The key national professional organisations must be party to the clinical registry.

The Chair of the Steering Committee should typically be a senior and distinguished and independent clinician researcher.
Management Committee

The Management Committee is responsible for managing day-to-day aspects of the clinical register. Data quality measures should be reported regularly to the management committee. The specific roles of the Management Committee are to:

- Be responsible for the administration of the management, staffing and budget in the Australian Clinical Quality Registry;
- Ensure that the data collection and data quality processes function effectively and that issues arising are dealt with in a timely and effective manner;
- Arrange for timely and appropriate statistical analysis, reporting and publication of Australian Clinical Quality Registry data;
- Review Australian Clinical Quality Registry data regularly and undertake necessary follow-up in accordance with policies ratified by the Steering Committee;
- Report back to the Steering Committee to ensure suitable resources are provided to facilitate action on policy-related issues;
- Ensure compliance with requirements of ethics committees and all relevant legislation;
- Provide reports and liaise as necessary with bodies providing funds to the clinical registry;
- Ensure that the finances of the Australian Clinical Quality Registry are audited annually in accordance with appropriate standards and that the audited statements are provided to the Steering Committee; and
- Develop and provide support for the function of the various scientific working groups.

The Management Committee should convene at least monthly and have provision for the calling of extra ordinary meetings as required. Minutes of these meetings should be taken. Membership should comprise at least:

- Two clinical specialists; and
- Two representatives from the data management centre.

Working groups

Working Groups are composed of a small, functional number of clinician-researchers with special interest in specific areas related to the clinical registry. They should be supported by a member of the data centre charged with coordination of the group. Their membership may alter as the focus or interests of the groups change.
Addressing quality of care

Between 1988 and 1994 the mortality rate for children undergoing complex cardiac surgery at Bristol Royal Infirmary was roughly double that elsewhere in the United Kingdom in five out of seven years. An independent investigation into the statistically significant excess death rate identified that, for much of that time, cardiac surgeons were contributing data to a register and were aware of their poor performance relative to other centres in the UK. This information was not made available to those in a position to initiate action and, as a result, deaths which could have been prevented were not.78 79

These findings highlight the need to not only have formalised reporting requirements, but to ensure that feedback processes exist to ensure that data are appropriately actioned. An escalation protocol must be developed and ratified by the Steering Committee including provision to notify the senior executive personnel within the practicing institution in the event of ongoing poor performance. Actions and processes to address poor performance need to be agreed upon, accepted and executed to ensure improvements in the delivery of patient care. It is important that the appropriate peak bodies and jurisdictions are involved so as to ensure appropriate corrective actions can be taken in a timely manner.

Summary

To ensure that Australian Clinical Quality Registries are well organised and governed, the following principles should be observed:

- Australian Clinical Quality Registries must formalise governance structures to ensure accountability, oversee resource application, provide focus and optimise output;
- Australian Clinical Quality Registries must establish policies to manage a range of contingencies arising from the analysis of data from the registry, which includes a formal plan ratified by the Steering Committee to address outliers or unexplained variance, to ensure that quality of care issues are effectively addressed and escalated appropriately.
Part A: Operating Principles

Data custodianship

A key role of the Steering Committee is to establish data access and reporting policies. These policies must take into account the requirements imposed by Institutional Ethics Committees and legislation.

The body responsible for the governance of the Australian Clinical Quality Registry should be a legal entity; that is an individual or organisation legally permitted to enter into a contract, and can be sued if it fails to meet its contractual obligations. The legal entity will generally be the administering institution which manages the funds provided to establish and maintain the Australian Clinical Quality Registry. This needs to be made explicit in any Contract and/or Funding Agreement established between the various parties associated with the registry.

It is generally the responsibility of the Steering Committee to provide advice on the collection and interpretation of data and to review publications arising from the Australian Clinical Quality Registry and advise on their scientific quality. The Steering Committee may wish to restrict the distribution of data pertaining to identifiable institutions until it is confident that the data quality is sufficiently accurate and that it has appropriate legal protection. The process and criteria for publishing Australian Clinical Quality Registry data needs to be made clear to all parties including those providing information to the Australian Clinical Quality Registry.

Research use

An important consideration when establishing an Australian Clinical Quality Registry is determining who should have access to data developed from the register. When Australian Clinical Quality Registries are publicly funded it is important that information is made available to the range of parties stipulated by the funding organisation, and agreed to by the institutions or other parties providing data. Sometimes this access may also be influenced by the requirements of relevant legislation (including the Public Health and Freedom of Information Acts).

For Australian Clinical Quality Registries to contribute to knowledge and be of benefit to consumers, data should be interrogated for research purposes. However, data access needs to be closely monitored to protect the personal health information of register participants and ensure that they are not harmed in any way: physically, psychologically, spiritually or emotionally. For this reason, all requests for data access should be made through the Steering Committee and receive Institutional Ethics Committee (IEC) approval. In the absence of a national ethics committee, it is acknowledged that where data are being sourced from multiple institutions this process is both protracted and often duplicative. The development of the National Ethics Application Form (NEAF) aims to reduce this burden.
In addition to the need to consider ethical issues associated with requests for data from an Australian Clinical Quality Registry, policies should be developed and endorsed by the Steering Committee to guide processes and costs to be charged (if any) to researchers and for-profit organisations wishing to have access to register data. It is important that a formal contract be developed between the registry and the researcher, detailing conditions of use of the data.

Researchers should also make available to the Steering Committee manuscripts for consideration for publication prior to submission. This is not to veto any publication but rather to assess the rigour of the study design and analysis, and to ensure that data are not misrepresented.

Summary

With regard to data custodianship, the following principles should be observed:

- Custodianship of data needs to be made explicit in Contract and/or Funding Agreements;
- Data access and reporting policies for Australian Clinical Quality Registries should be made available to persons wishing to use register data;
- Third parties wishing to access data and publish findings must seek approval from the Steering Committee and obtain relevant Institutional Ethics Committee endorsement where identified or re-identifiable data or contact with patients is sought.
Ethics and privacy

All Australian Clinical Quality Registries need to be aware of and compliant with the relevant legislation and regulations, Commonwealth, state and territory, that are applicable.

With the exception of instances where data collection has been mandated through legislation or enabled through regulation or legislation without patient consent (e.g. cancer registries, Creutzfeldt-Jakob disease registry), a requirement of registries is that approval for the collection of data at each site is given by an Institutional Ethics Committee (IEC).

This section discusses existing legislation and issues relating to obtaining consent from clinical register participants.

Legislation and guidelines

Personal information held by registries is protected by both Commonwealth and State Privacy Acts. The Privacy Act, established in 1988, aims to protect information held by federal government departments and agencies. The Privacy Amendment (Private Sector) Act, passed in 2001, aims to protect personal information held by private sector organisations. Under the Privacy Act there are two sets of privacy principles; one which applies to the Commonwealth public sector (Information Privacy Principles (IPPs)) and the other which applies to the private sector (National Privacy Principles: NPPs). The Australian Law Reform Commission reported to the Commonwealth Government on privacy legislation in mid-2008. The Commonwealth’s response is not expected before the end of 2009.

In addition to these Privacy Principles, most States and Territories have also enacted their own privacy legislation that applies to State public sectors. The criteria for protection and its extent vary between the different States and Territories making it important that clinical registries check on the protection available in their jurisdiction. Table 5 outlines Privacy Acts and Principles within the States and Territories current as of 2008. It should be noted that these may change, so when establishing a register it is imperative that registry custodians seek advice on Acts and Principles which deal with confidentiality of identifiable data which might be of relevance to them.

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Act</th>
<th>Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>New South Wales</td>
<td>Privacy and Personal Information Protection Act 1998</td>
<td>Information Privacy Principles (IPPs)</td>
</tr>
<tr>
<td></td>
<td>Health Records and Information Privacy Act 2002</td>
<td>Health Privacy Principles</td>
</tr>
<tr>
<td>Victoria</td>
<td>Information Privacy Act 2000</td>
<td>Information Privacy Principles (IPPs)</td>
</tr>
<tr>
<td></td>
<td>Health Records Act 2000</td>
<td>Health Privacy Principles</td>
</tr>
<tr>
<td>Queensland</td>
<td>Non-legislative scheme incorporating NPPs into Queensland</td>
<td>National Privacy Principles (NPPs)</td>
</tr>
</tbody>
</table>
Part A: Operating Principles

<table>
<thead>
<tr>
<th>Western Australia</th>
<th>No current privacy scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Australia</td>
<td>Has issued an ‘administrative instruction’ that government agencies should comply with IPPs</td>
</tr>
<tr>
<td>Tasmania</td>
<td>Issued the IPPs based on the Federal version</td>
</tr>
<tr>
<td>Northern Territory</td>
<td>Information Act 2002</td>
</tr>
<tr>
<td>Australian Capital Territory</td>
<td>National Privacy Act applies Health Records (Privacy and Access) Act 1997</td>
</tr>
</tbody>
</table>

Table 5 Privacy Acts and Principles

Under the Privacy Act 1988, the NHMRC is authorised to issue guidelines to protect the privacy of personal information and health information which may be used for the purposes of research. Two sets of guidelines have been developed:

▶ The S95 Guidelines, which provide a framework in which medical research involving personal information held by Commonwealth public sector agencies should adhere to ensure that information is protected against unauthorised collection, use or disclosure, and

▶ The S95A Guidelines which provide a framework in which medical research involving personal information held by private sector organisations or institutions should be conducted to ensure that information is protected against unauthorised collection, use, and disclosure in the conduct of health service management activities.

When registers are proposed, Institutional Ethics Committees must consider which Acts apply (State/jurisdiction, Commonwealth or both), whether the registry conforms to the relevant Privacy Principles and apply the S95 and S95A Guidelines. The S95 and S95A Guidelines are used mainly in cases where consent from participants to use their data cannot be obtained.

The National Statement on Ethical Conduct in Human Research has been developed jointly by the NHMRC, the Australian Research Council and the Australian Vice-Chancellors’ Committee to provide clear guidance for those conducting research and those involved in its ethical review. It outlines values and principles of ethical conduct, risk in research, the role of consent, ethical considerations specific to research methods, fields and participants, and processes of research governance and ethical review. Registry personnel should be familiar with the National Statement and comply with requirements outlined in the document.
Consent

The issue of consent is complex, and for this reason requires careful consideration of relevant Acts, guidelines, and the National Statement by ethics committees. There are two methods by which consent can be obtained. This can generally be either by:

1. Asking individuals to register their willingness to be included on an Australian Clinical Quality Registry (opt in); or
2. Presuming that an individual will be willing to be included on an Australian Clinical Quality Registry unless they lodge an objection (opt off).

In some circumstances personal information including health information can be collected without consent for health and medical research. Apart from legal mandate or legal authorisation, only an Institutional Ethics Committee (IEC) has the ability to waive the requirement for consent for medical research using personal information. For this to occur, ethics committee members must be satisfied that all of the following apply:

- Involvement in the research carries no more than a low risk;
- The benefits of the research justify any risks of harm associated with not seeking consent;
- It is impracticable to obtain consent;
- There is no known or likely reason for thinking that participants would not have consented if they had been asked;
- There is sufficient protection of their privacy;
- There is an adequate plan to protect the confidentiality of data;
- In case the results have significance for the participants’ welfare there is, where practicable, a plan for making information arising from the research available to them; and
- The possibility of commercial exploitation of derivatives of the data or tissue will not deprive the participants of any financial benefits to which they would be entitled and the waiver is not prohibited by State, federal or international law.

It has been repeatedly demonstrated in quality improvement programs that requiring specific permission in advance from potential research participants (opt in) will lead to the collection of a relatively small fraction of eligible cases and the resulting data will have no credibility for quality improvement.34 82–86

To overcome the problems associated with low participation rates resulting from voluntary recruitment of research participants, while still allowing an exclusion for those who are actively opposed to participation, Australian Clinical Quality Registry custodians commonly request IEC approval for an approach whereby potential participants are provided with information about the register and provided with an option to not participate without incurring any cost (opt off). Specifically, potential register participants must be provided with clear and easily interpreted information detailing:

- The purpose of the Australian Clinical Quality Registry;
Part A: Operating Principles

- That their identity and some specific clinical information will be retained in the Australian Clinical Quality Registry unless they contact the registry to lodge their objection;
- How information contributed to the Australian Clinical Quality Registry will be used, including how data may be linked and shared;
- That a decision not to participate in the Australian Clinical Quality Registry will incur no penalty, either financially or in respect to the care they will receive;
- How they may lodge a complaint through an independent complaints process.

Options by which people can notify the Australian Clinical Quality Registry should they not wish to participate in the register include via free-call telephone number, web-based systems or return postage paid forms distributed with the registry information leaflet. A period of two weeks should lapse before data are made available to the Australian Clinical Quality Registry.

It is recommended that this form of opt off consent be a standard approach taken upon the establishment of new registers and that an education process be established to inform IECs of the appropriateness of this approach when considering new Australian Clinical Quality Registry applications.

Care must be taken to avoid confusing safety and quality monitoring with research with regard to customary approaches to consent. Australian Clinical Quality Registries need to understand the legal environment and the legal options for gaining complete coverage for this monitoring. The issues of bias from sub-optimal coverage, or of missing rare but crucial sentinel events, needs to be understood. Even when registry data collection is legally compelled or authorised, ethics committee approval may be important to lend credibility to the data collection processes, provision of information to patients about the use of their data, etc.

Research

Consent for establishment of an Australian Clinical Quality Registry should be considered separate from consent for research projects arising from register data. Where research projects are undertaken using register data, IEC approval must be sought unless the activity falls within the scope of a quality assurance activity. A quality assurance activity is one in which the primary purpose is to monitor, evaluate or improve the quality of the health care delivered by a health care provider (constituting an individual, a service or an organisation). The National Health and Medical Research Council have outlined conditions under which quality assurance activities would not require independent ethical review, namely provided:

Both:

- The activity is undertaken with the consent of patients, carers, health care providers or institutions involved or
- Is consistent with NPP 2.1 (a) which states: ‘An organisation must not use
or disclose person information about an individual for a purpose (the secondary purpose) other than the primary purpose of collection unless’…’ both of the following apply:
1) The secondary purpose is related to the primary purpose of collection and, if the personal information is sensitive information, directly related to the primary purpose of collection;
2) The individual would reasonably expect the organisation to use or disclose the information for the secondary purpose;

and

b. It is an activity where participants, including patients, carers, health care providers or institutions are unlikely to suffer burden or harm (physical, mental, psychological, spiritual or social).

Additionally, such activities may not require independent ethical review if legally mandated or legally authorised.

If it is anticipated that Australian Clinical Quality Registry data will be used as part of ongoing quality assurance activities within institutions, then this should be made known to potential registry participants in information material made available to them.

Qualified Privilege

In undertaking quality assurance activities there is a risk that quality of care issues may be identified. In the interest of ensuring frank and open discussion of findings from quality assurance activities without fear of litigation, organised committees overseeing quality assurance activities may apply for a legislated protection of Qualified Privilege. Register custodians should consider applying for protection in this way.

The criteria for protection and its extent vary between the different States and Territories making it important that clinical registries check on the protection available in their jurisdiction. Using New South Wales as an example, though, qualified privilege affords the protection for:

- The confidentiality of documents and proceedings of the Committee;
- The protection of those documents and proceedings from being used in legal actions; and
- The protection from liability and indemnity for present and former members, of the Committee, who were acting in good faith in carrying out their responsibilities.

Committees seeking qualified privilege must demonstrate that:

- The public interest in gaining health care professionals participation outweighs the community’s interest in accessing information; and
- That there will be an improved standard of patient care arising from the Committee’s activities if it was able to operate under a guarantee of privilege.
To the extent that an Australian Clinical Quality Registry is engaged in quality activities it may be protected by the existing legal regime depending upon its relationship to the unit or group which is the subject of the quality activity. As an example, data from registers collected within an institution and discussed at that institution’s quality assurance committee would be protected from disclosure provided the committee had sought and been afforded qualified privilege.

Currently in Australia, it is not commonplace for committees overseeing registry function to have sought this legislative protection. Without this protection, Courts have the power to compel information from clinical registries. This is in contrast to the United Kingdom where the Health and Social Care Act 2001 has explicit provisions protecting register data from disclosure.

Summary

With regard to ethics and privacy issues, the following principles should be observed for those Australian Clinical Quality Registries in which data collection has not been mandated or enabled through legislation or regulation:

- Institutional Ethics Committee approval must be obtained to establish the Australian Clinical Quality Registry (except where legally mandated or legally authorised);
- Registry personnel should be familiar with and abide by the requirements set out in relevant privacy legislation, the *National Statement on Ethical Conduct in Human Research* and the *Australian Code for the Responsible Conduct of Research*;
- Participants or their next of kin should be made aware of the collection of register data. They should be provided with information about the Australian Clinical Quality Registry, the purpose to which their data will be put and provided with the option to not participate. This should be at no cost to the registry participant.
- Where projects are undertaken using register data, IEC approval must be sought unless the project falls within the scope of an institution’s quality assurance activity.
 Outputs

Australian Clinical Quality Registries need to report rapidly on information they collect, to those institutions and individual clinicians contributing data, to regulatory bodies, to jurisdictions, to funders and to the wider community. A common problem with registries has been the delay in reporting information. Although time is required to ensure completeness and accuracy of data collection, Australian Clinical Quality Registries should give consideration to rapid feedback of interim data.

In discussing the reporting requirements of Australian Clinical Quality Registries, this section covers methods for analysing data and reporting requirements which must be in place to ensure that data are adequately reviewed and appropriately actioned.

Data analysis

Analysis of Australian Clinical Quality Registry data may include:

- Descriptive reporting of significant process variance
- Benchmarking;
- Volume quality assessment;
- Assessment of compliance with best practice guidelines;
- Post-market surveillance of devices and of new and existing technology;
- Assessment of outcome prediction;
- Preventive measures demonstrated to reduce harm; and
- Cost-benefit assessment.

Benchmarking

In a report written by the Society of Cardiothoracic Surgeons of Great Britain and Ireland it was stated that, “In order to measure the quality of any service industry some sort of benchmarking and performance assessment is the first step and is unavoidable”. 89

Registers are an ideal source of data from which outcomes can be measured and results compared amongst different institutions, within Australia and overseas. Interpretable results require that case ascertainment is complete (from the participating institutions), valid outcome data is obtained and adequate risk adjustment undertaken.

Statistical process control charts and box-plot diagrams provide two examples of ways in which data can be displayed for benchmarking purposes. Figure 5 is an example of a statistical process control chart. Figure 6 is an example of a box plot used to compare and measure distribution of measurement values of different units.
Statistical process control charts provide a continuous display of observed versus expected performance for conditions and therefore potentially offer a more effective means of monitoring practice, provided that analyses are conducted at relatively short time periods.90

Figure 5. Example of a statistical process control chart
Reproduced with permission from *Handbook for Establishing Quality Registries.*23

Figure 6. Example of a box plot
Reproduced with permission from *Handbook for Establishing Quality Registries.*23
Volume quality assessment

Register data has been valuable for defining the numbers of procedures required by individuals and units to achieve optimal results.91–93 Figure 7 demonstrates the relationship between numbers of angioplasties and bypass surgery and patient mortality rates by physician. In this example, it is apparent that physicians performing more than 50 procedures per year and hospitals performing more than 200 procedures per year demonstrated reduced mortality compared to those performing fewer procedures.92 Register data has also been used to monitor the relationship between volume and complications at an individual and hospital level (Figure 8).

\textbf{Figure 7. Volume quality assessment: rates of bypass surgery and death after angioplasty according to the annual volume of Medicare angioplasties performed by the treating physician.}

Compliance with guidelines

Registries that collect information on aspects of disease management are useful for assessing compliance with published treatment guidelines. They provide valuable information to allow variations in practice to be investigated. For example, the Australian and New Zealand Dialysis and Renal Transplantation (ANZDATA) registry has been used to assess how well implemented standard guidelines were for the management of iron levels in patients with chronic kidney disease who were dependent on dialysis. Factors identified in units achieving high level of compliance with guidelines (such as the use of nurse-driven iron management protocols and iron management decision aids) can then be translated and applied to those units demonstrating poorer management of patients.

Surveillance

Some registers are established primarily to provide post-market surveillance of medical devices and technologies in the clinical setting. The Australian Orthopaedic Association Joint Replacement Registry is an example of one such register. The principal measure of outcome in this register is revision surgery.
Other registries may be ideally suited to monitor products or devices as part of their role in safety and quality improvement. This is likely to be an increasingly important role for registries in addition to their other functions. The Cardiac Surgery registry, for example, collects details on the type of valve replacement prostheses inserted during cardiac surgery.95 Should analysis identify one type of valve as having a higher complication rate than others, then further action could be initiated. Similarly, if a safety alert was initiated a registry could provide a listing of potentially affected individuals.

The strength of the data provided by registries is similar to that of other observational datasets in that it is generally less rigorous than clinical trials and potentially more prone to bias and confounding. Considerable attention must be paid to data quality to minimise these adverse influences. However, registries do have the strength of potentially greater representativeness of the patient population being treated and routine clinical settings, and provide a longer duration of surveillance than is typically available from a clinical trial.

Outcome prediction

Register data may be used to help identify previously unverified factors that exert a measurable impact on outcomes. This was demonstrated when the Victorian State Trauma Registry was used to investigate factors associated with mortality and extended stay in Intensive Care Unit in patients who had sustained blunt trauma.96 It was shown that the Glasgow Coma Scale motor response and respiratory rate determined during pre-hospital triage were both independent predictors of mortality and length of stay in the Intensive Care Unit. The impact of this finding is that these two variables are now considered important criteria for triaging patients out of the hospital environment. Similarly, the ANZDATA registry was used to assess the impact of geographic variance in access to renal transplantation97 and to show that people living in disadvantaged areas were more likely to have delayed referral to see nephrologists.98

Preventive measures

Data from registers have been extensively used to investigate factors contributing to the development or progression of diseases and illnesses. Identification of risk factors provides information that is useful for disease prevention. Cases collected from registers are compared with data from matched controls in case control studies to identify potential causal factors for the disease in question. Examples include studies to identify risk factors associated with operative procedures,99 100 suicide101 102 and the development of cancers.102
Part A: Operating Principles

Cost-benefit assessments

Data from registers may also be useful for collecting information about current management approaches and their costs. Cost-effectiveness analysis is increasingly being required to focus services and procedures delivered in an increasingly complex environment. Studies such as those investigating the cost effectiveness of the establishment of stroke units compared to conventional care for patients suffering strokes have used data from registers.\(^\text{103}\) Longer term studies evaluating costs associated with the management of patients can also be assisted by the use of clinical register data.\(^\text{104}\)

Reporting

Australian Clinical Quality Registries have a fundamental requirement to report without delay on information they collect to institutions and clinicians and to the wider community, including jurisdictions, funders and consumers. The requirement that Australian Clinical Quality Registries must have a formalised process to address quality of care issues has been described (for further details, refer to the Organisation and governance section). At a central registry level, data must first undergo peer review to validate analyses. Data must then be fed back to institutions and contributing clinicians, prior to wider release of data.

Peer review

Peer review of register data is fundamental to ensuring the validity of findings. A formal mechanism should exist within Australian Clinical Quality Registries to ensure that, prior to release of information, data are assessed by a number of clinicians specialising in the area being measured. It is the responsibility of the Steering Committee to monitor this process. The role of the peer reviewers is to consider whether any assumptions or biases have been introduced in the analysis of data. Where outliers or unexplained variance exist, the peer review process should provide a clinical context which might explain the findings. A finding of the peer review might be to request closer inspection of cases. Institutions contributing to Australian Clinical Quality Registries must be committed to investigating anomalies in findings to determine causation.

Wherever possible, the reviewers should be blinded (the clinicians should not know the identity) to both the institution and/or clinician being studied.

Feedback

An Australian Clinical Quality Registry should supply regular reports to contributing clinical units that will allow as close as possible to real-time monitoring of key outcome and/or process measures and retrieval of past reports.

Local contributors should also receive:

- A standard suite of reports comparing their performance against the aggregated national data, and possibly also against other jurisdictions and peer groups. This suite will typically contain risk-adjusted outcome data and adherence to guidelines (process measures where collected);
Details of missing variables and outliers to enable data quality checks to be performed;

Information on how to distinguish data which has gone through rigorous quality checks against that which needs to be verified.

The provision of full access to a contributor’s own data and the associated reports (ideally via real-time web-based access data access and reporting mechanism) can also act as a key benefit and driver for participation.

The broader reporting framework should include:
- Reports on the performance of registries at least annually;
- Information about the clinical register specifications, including eligibility criteria and database coverage to enable others to approach the registry to undertake analysis or linkage;
- Contributions to national safety and quality reporting, including the key methods and indicators demonstrating the impact of the Australian Clinical Quality Registry upon clinical practice.

Delays or restrictions on the public reporting of clinical registry findings may occur for a number of justified reasons:
- Data relating to identifiable institutions need to be assessed to ensure sufficient accuracy prior to release;
- Data need to be properly interpreted in a clinical context. Where outliers or unexplained variance exist, there needs to be investigation to determine causality.

Public reporting

Australian Clinical Quality Registries should disseminate aggregate findings to the wider community. An annual report should be produced and be publicly accessible. It should include:
- Reference to governance issues, particularly noting any changes to the structure, management and/or practices of the registry;
- Activity statements, including changes to data collected and reporting mechanisms and timetable;
- Descriptions of links and involvement of the relevant professional organisations;
- Summary information about data lodged;
- Listings of requests for access and whether they were accepted or declined, with reasons;
- Data on major indicator trends without necessarily identifying individual organisations or providers. This should include commentary on interpretation of major findings, and any improvement efforts undertaken as a result of issues identified by the Australian Clinical Quality Registry;
- Commentary on the way in which Australian Clinical Quality Registry data are routinely used by local users.
Part A: Operating Principles

In addition to the publicly released Annual Report, Australian Clinical Quality Registry custodians might consider providing register participants with information about how the register data is being used via public forums and/or distribution of written updates.

Addressing unexplained variance

Australian Clinical Quality Registries must have a formalised process to address quality of care issues. This has previously been described (refer to the *Organisation and governance* section) and needs to include a documented procedure for addressing outliers or occurrences of unexplained variance from nomograms. Such procedures need to involve the appropriate peak bodies and jurisdictions so as to ensure appropriate corrective actions can be taken in a timely manner.

One recent example is the Proposed Outlier Management Plan developed by the Australian and New Zealand Intensive Care Society (ANZICS) http://sas.anzics.com.au/Portal/backToMain.do

Summary

In reporting output from Australian Clinical Quality Registries, the following principles should be observed:

- Data from Australian Clinical Quality Registries should be used to evaluate quality of care by identifying gaps in best practice and benchmarking performance.
- Australian Clinical Quality Registries must report without delay on risk adjusted outcome analyses to institutions and clinicians;
- Australian Clinical Quality Registries should verify data collected using a formalised peer review process prior to publishing findings;
- Local database managers should have the capacity to undertake ad hoc analyses of their data to enable monitoring of clinical care;
- Australian Clinical Quality Registries must produce a publicly-accessible aggregated annual report detailing clinical and corporate findings.
- Australian Clinical Quality Registries must have documented procedures for reporting on quality of care, including addressing outliers or unexplained variance.
Resourcing

Australian Clinical Quality Registries can be regarded as long-term data repositories. As such, they must be funded to ensure their sustainability. The Steering Committee should formally assess the resources required for the maintenance of the registry on a scheduled basis. Funding renewal for registries should incorporate a review of their continuing relevance, impact and performance.

When considering the funding requirements for registries, consideration must be given to costs associated with:

1. Staffing
 - Costs associated with training of data collectors, including data entry;
 - Data processing and coding personnel;
 - Personnel required to construct and maintain the purpose-built database, including database programmers;
 - Administrative assistance e.g. to arrange meetings and investigator/ scientific forums and prepare Ethics Committee applications;
 - Legal consultation to establish Contracts and Funding Agreements.

2. Information technology
 - Hardware and software costs;
 - Security provision and database infrastructure.

3. Ensuring data quality
 - Cost associated with validation and quality checks of data, including case audits. For an Australian Clinical Quality Registry to be well-maintained it requires scheduled data cleaning and quality checks to be performed and for it to be interrogated to assess the usefulness and functionality of the dataset.

4. Disseminating Australian Clinical Quality Registry findings
 - Costs associated with publishing reports, including the Annual Report;
 - Data linkage costs;
 - Provision of specialist skills such as those required to assist with analysing, interpreting data and publishing findings.

Additional funding is usually required to enable specific projects to be implemented using register data. As these projects seed from the Australian Clinical Quality Registry, it is the role of the Steering Committee to ensure that governance structures are maintained.
Summary

When considering the resourcing and funding of registries, the following principle should be observed:

- Australian Clinical Quality Registries should be appropriately funded to allow for data collection, reporting and the institution of strong quality control procedures.
Part B: Technical standards

The Technical Standards for Australian Clinical Quality Registries is composed of two sections:

- **Architecture Overview** – describes the architecture relevant to Australian Clinical Quality Registries. This includes a discussion of the ideal longer term national e-health environment and how Australian Clinical Quality Registries figure in such a landscape. There is also the shorter term view, also including suggested national infrastructure to enhance the sustainability and efficiency of registries.

- **Standards Map** – a listing or mapping of the various technical standards that may be relevant to an Australian Clinical Quality Registry. There is recognition that there may be varying levels of technical sophistication required depending on a given registry’s scope and purpose and identifies the different standards that may be applicable for each level.
Part B: Technical standards – Architecture overview

This Architecture Overview describes:

- the short-term approaches which can realistically be implemented immediately to increase the consistency and value of information stored in clinical registries; and
- a longer term vision of a new approach to clinical registries.

The National E-Health Transition Authority (NEHTA) had defined the scope of its work in clinical registries as primarily focusing on high-quality, high-value registries that operate on a national level and have the potential to support the adoption and implementation of NEHTA specifications on a large scale. These national registries are considered likely to grow in number and purpose in the future, and hence steps taken to improve the consistency across registries, in terms of information collected and technologies deployed, are likely to reap future benefits in terms of usability and interoperability.

The proposed new approach would provide significant efficiencies in data collection, accuracy and analysis through elimination of duplication, collection of more complete and accurate data and in increased ability to utilise data for research and statistical analysis.

Infrastructure

This section contains discussion of the following:

- NEHTA infrastructure
- Clinical registry infrastructure
- Application of this Architectural Overview.

NEHTA infrastructure

The National E-Health Transition Authority (NEHTA) was established in July 2005 to set the necessary foundations for the widespread and rapid adoption of e-health across the Australian health sector.

Although electronic exchange of clinical information is already occurring in some areas, significant issues can arise from a lack of standards and agreed ways of working. Accelerating the adoption of information technology within the health sector will require a common set of standards and policies that allow people, organisations and electronic systems to work together – that is, it will require ‘interoperability’.
To address this lack of standards generally, NEHTA has developed an overarching e-health interoperability framework. To address the lack of standards for Australian Clinical Quality Registries, NEHTA has developed this Architectural Overview and associated Standards Map.

The interoperability framework provides guidance on identifying and defining key concepts which must be addressed at the organisational, information and technical levels before systems can effectively communicate and interoperate. It also provides the basis for an e-health architecture including identifying e-health requirements, specifying e-health technical approaches through products and technologies, testing conformance to interoperability requirements, value assessment; and change management.

Increased sharing of clinical information will only be acceptable to consumers and clinicians if it occurs within a trusted environment, and so privacy is critical to the success of e-health. NEHTA is committed to developing the national foundations for the electronic exchange of healthcare information in a way that ensures the privacy of individuals’ information is appropriately protected. A Privacy Management Framework has been developed to ensure privacy is managed effectively across the entire NEHTA work program. A range of key stakeholders have received this framework positively, in particular privacy regulators and consumer advocates. The Privacy Management Framework will continue to inform, guide and support NEHTA’s privacy work.

The following sections provide further details on key NEHTA building blocks and national infrastructure relevant to Australian Clinical Quality Registries.

Unique Healthcare Identifiers (UHI)

The ability to accurately identify healthcare providers, healthcare organisations and individuals who are interacting with the healthcare system, is critical to health IT interoperability. To achieve this end, NEHTA and Medicare Australia are developing both an individual healthcare identifier and a healthcare provider identifier.

1. **Individual healthcare identifier (IHI)**

The IHI service will provide the facility to uniquely identify an individual for healthcare purposes and will link them correctly to their health information.

- No clinical information will be stored on the IHI record.

The IHI is essential for the safe electronic exchange of patient information, as it ensures that it is accurately attributed to the correct patient. An IHI will be recognized across the entire healthcare sector.

The IHI service will make available both a number and a record of information. The record of information will be divided into three sections – a summary record, an identification record, and a demographic record.

The summary record will contain the minimum number of data fields to enable the matching of an individual to their IHI (e.g., name and date of birth).
The identification record also contains any additional data fields required for the positive identification and association of an individual with their IHI.

The demographic record includes data fields not essential to accurately identify an individual, but which could assist in the provision of quality health care (e.g., an individual’s mobile phone number could be part of their demographic record).

Activation of an IHI will occur subject to individual consent. However, an individual’s eligibility to receive health services is not affected if an IHI is not activated.

(2) Healthcare provider identifier (HPI)

The purpose of the HPI is to uniquely identify both healthcare provider individuals (eg, general practitioners, pharmacists, pathologists) and healthcare provider organisations (eg, hospitals, pharmacies and pathology laboratories). The HPI service provides the ability to verify the provider is registered and authorised, and improve the reliability of manual and electronic communications between providers.

In addition to accurate identification of healthcare providers, there will also be a requirement to authenticate their identity, i.e. to confirm they are who they say they are, in order to support electronic processes such as prescribing which currently requires a paper-based form and signature. NEHTA is proposing a strong authentication system which will be achieved by applying digital identity management approaches.

Clinical information specifications and terminologies

Healthcare practitioners capture and record clinical information about their patients, to provide a history of care for ongoing clinical care and to share with other clinicians involved in the care of the patient. The ability to record the information in a standard and accurate format is critical to the process of its safe exchange. A standard clinical terminology, in conjunction with standard data specifications can provide clinical data with both consistent meaning and context, enabling entry, storage and communication of clinical information in ways that allow it to be safely and consistently reused, retrieved and processed by different software applications.

Through consultation NEHTA has developed a range of structured documents and re-useable data group specifications for use in care delivery. In contrast to the national minimum datasets currently used for statistical reporting, these specifications provide a comprehensive dataset and generic clinical information structure, that is sufficient to support clinical complexity, such as that encountered when reporting results of diagnostic investigations, and which can be specialised or further constrained where required.
In 2005 Australian Health Ministers endorsed NEHTA’s recommendation that the Systematised Nomenclature of Medicine, Clinical Terms (SNOMED-CT) should be adopted nationally. SNOMED-CT is a clinical terminology which uniquely identifies clinical concepts and their associated synonyms and relationships. Its purpose is to assist in the care of the patient by providing a consistent language that is both human-readable and computer-processable.

NEHTA has established the national service required to centrally maintain, update and distribute the national clinical terminology and clinical information specifications, including customisation of the terminology to meet Australian needs. Local extensions will be developed in line with the SNOMED-CT standard. Where local variations in terms exist, these will be mapped or linked to the core reference terminology.

Work is in train in Australia and internationally to develop mappings between terminologies and the classifications (such as the International Classification of Diseases) that are used in health statistics.

NEHTA is also working to develop specifications for standard exchange formats (HL7 and/or CDA, as appropriate).

Individual Electronic Healthcare Record services

The primary purpose of the Individual EHR will be to support the delivery of safer and higher quality health care. The Individual EHR will contribute to this by improving the availability, quality and sharing of selected healthcare information to support clinical decision making. Secondary uses of the Individual EHR include public health and policy planning, and supporting safety initiatives, disease detection, research and education.

Participation in the Individual EHR will be voluntary. The Individual EHR will maintain a longitudinal record of structured healthcare information for participating individuals. The Individual EHR will, with the patient’s agreement, be accessible from multiple points of care and will maintain a high standard of privacy and security. The Individual EHR is designed to record key facts about participants (such as current medications, allergies and alerts, problems, etc.) and to make them accessible to all those involved in providing care to the individual. Copies of clinical documents (such as discharge summaries, pathology results, radiology reports and other event summaries) may also be stored and be accessible to authorised users via the Individual EHR services whenever and wherever required.

NEHTA is currently collaborating with Australian, State and Territory Governments to develop a business case for a national approach to Individual EHR, which will be submitted to the Council of Australian Governments (COAG) in 2008. Assuming the business case is adopted, the Individual EHR will be progressively implemented in a number of urban and regional areas over the next five to ten years.
Australian Clinical Quality Registry infrastructure

The number of clinical registries in Australia has grown markedly in recent years as has interest in the establishment of new clinical registries to ensure quality in the provision of health care. To date there is no single standard or shared methodology for the development, establishment and ongoing management of clinical registries. Clinical registries in Australia vary in their purpose, design, scale, and scope and as such there is little continuity in their design.

The Architecture Overview and Technical Standards recommended by NEHTA will have varying degrees of application at different stages of development, dependent on the maturity of each individual registry. For example, a small local registry with a paper-based data collection entered into a Microsoft Excel or Microsoft Access database in a non-networked computer will have very different needs to a large international registry that uses a browser-based user interface to collect information and electronically cross-checks information for validity in real time with external data collections.

To enable those individuals and agencies responsible for clinical registries to easily navigate the architecture and standards developed by NEHTA and determine their applicability registries have been divided into four registry types (Figure 9). These types have been determined by the level of technology utilised in the collection, storage, cleansing, quality checking, analysis and reporting of data. Australia currently has registries representative of all four types. These are as follows:

1. Level 1: Stand-alone registry.
 ▶ Paper-based submission of data to the registry; and
 ▶ Data entry into a stand-alone computer system for analysis and reporting.

2. Level 2: Web-based submission of data into the registry.
 ▶ Allows some or all contributors to submit data to the registry electronically via web browser user interface, this may be combined with paper-based reporting.

3. Level 3: Web-based submission of data into the registry and electronic cross-checking of data or linkage of data with an external system.
 ▶ Allows some or all contributors to submit data to the registry electronically via web browser user interface, this may be combined with paper-based reporting; and
 ▶ Cross-checks data with external sources for validity (either in real time or after data entry), or
 ▶ links with external systems to link data.

4. Level 4: All level 3 plus automatic data collection from local clinical systems.
Local clinical system is the primary vehicle for data collection, relevant data is either automatically sent or prompted to be sent to the relevant registries.

Application of Architecture Overview

Application of the architecture to clinical registries is expected to occur over time. NEHTA has developed both a short-term and a medium to long-term architecture to accommodate the Australian Clinical Quality Registries timelines and to account for the varying levels of technical maturity for Australian clinical registries.

The short-term architecture recommends the creation of a common registry portal and applying a more standards-based approach to the individual registries with technology choices and design that will migrate to a better interconnected e-Health system in the future. The level of technical maturity achieved by a clinical registry will determine the extent to which the standards will need to be applied. Although some registries in Australia are quite technically mature and may be classified as Level 4, the recommended short term architecture is independent of the individual registries and can be applied to all levels.

The medium to long-term architectural vision would cater for clinical registries at all levels and is intended to prompt thinking and discussion about the way clinical registries operate and the long-term goals of registries in an ideal environment.
It would be unrealistic to attempt this scale of change for all registries in the short term. The proposed short-term architecture has been specifically designed to be realistic in the short term but allowing migration to the longer term vision. The short-term architecture acknowledges the fact that currently clinical registries often begin as a small stand-alone database and develop into large, highly sophisticated systems. Some of the more mature registries may be ready to adopt additional aspects of the longer term architecture sooner, and could look to leverage components of the national e-health infrastructure as they become available.

Short-term architecture

This section proposes the first steps in changing the approach taken to clinical registries. It is designed to be achievable in the short term. The aim is to make improvements where possible in a way that allows subsequent progression in the direction of the vision.

The longer term vision is characterised as a national approach supported by national infrastructure that:

1. assembles the many different registries together under a consistent portal for the convenience of individual providers; and
2. applies a standards-based discipline to improve sustainability.

The short-term architecture recommends a National Portal providing a very basic, and therefore achievable, directory of registries. This national infrastructure is a place holder where the more sophisticated functions of the vision can be added over time.

The short-term architecture also recommends applying a more standards-based approach to the individual registries with technology choices and design that will migrate to a better interconnected e-Health system in the future.

Constraints

In Australia clinical registries have been established in a variety of health care settings for a range of purposes over time. This has resulted in a large number of registries that have differing organisational, informational and technical processes. These variations constrain what can be immediately achieved through implementation of the short-term architecture.

The following are the main constraints that determine what may be achievable in the short to medium term:

- National registries currently lack a shared national infrastructure and standards that would enable them to harness benefits emerging from the implementation of e-health. The main issue in temporarily filling the gaps is to ensure it is done in a way that can be migrated to the national infrastructure in the future. Note some of this national infrastructure will be provided through the NEHTA work program – of particular relevance is the NEHTA work on identifiers, data specifications and terminologies.
The current approach to achieving direct system interfaces between the source, capture systems and the registry systems is costly and unlikely to be sustainable in the long term. Establishment of these interfaces is on a point by point basis and the stability of the systems and the quality of the data capture (mainly due to static, non-extensible software and unconstrained user interfaces) causes significant operational overhead. Again, NEHTA’s current work on web services and secure connectivity is of relevance and may provide alternative mechanisms for connectivity.

Web browser user interfaces generate double data entry environments.

Browser user interfaces are only better than paper-based systems as the quantity and complexity of data capture increases. For very simple data capture sticky printed labels (found in abundance in hospital settings) containing most of the relevant details and stuck on a paper form along with marking some checkboxes can literally take a few seconds to complete. This process leads to high quality data capture with minimal error. With barcode scanners this efficiency and quality can also be achieved at the point of central data entry into the system.

Browser user interfaces can improve data quality as the data capture is closer to the proximity and time of the event. It is, however, much harder for central data entry staff to clarify and/or correct data captured on paper forms (kilometres away and/or weeks ago).

Browser user interfaces generally require compensation to offset the overhead imposed in a clinical setting. This compensation could be business value, additional resources, monetary, etc.
National infrastructure

The national infrastructure envisioned by NEHTA includes:

- a national portal for Australian Clinical Quality Registries
- e-health infrastructure elements that NEHTA is developing that are relevant to Australian Clinical Quality Registries.

National registries portal

A directory of registries is a new element of infrastructure recommended by NEHTA. It will act as a single point of contact between the individual providers and the national registries. The directory (Figure 10) would be set up as a National Portal or website which provides basic details and links as a convenience for individual providers and would be a reliable mechanism to expose the existence of registries to the individual providers who perform the critical task of data capture.

Individual providers would go to the National Portal to:

1. Determine what registries may be appropriate for a particular care event.
2. Review provider participation and patient consent requirements.
3. Review the required data capture and download the latest printable forms.
4. Navigate to the individual portal of any registry.

Figure 10. National registries portal

NEHTA suggest that this is a key element of the short-term architecture. However, it is not funded as part of NEHTA’s work program, and a relevant body would need to seek funding for its establishment.
NEHTA infrastructure

Other elements of the short-term architecture are already planned as part of national infrastructure development through the existing NEHTA work program. In particular, the following national infrastructure services are scheduled to come on-line by the end of 2010, and should be leveraged to provide short to medium term value for registries:

- Individual Healthcare Identifier (IHI)
- Healthcare Professional Identifier – Individual (HPI-I)
- Healthcare Professional Identifier – Organisation (HPI-O)
- National Product Catalogue (NPC)
- Clinical Terminologies (SNOMED/AMT) and Data Specifications
- NEHTA Standards Catalogue.

Each of these areas has published recommended standards that can be used in system design and development to ensure compatibility with the national infrastructure and alignment to the NEHTA direction. Part B: Technical standards – Standards Map lists the applicable standards in each of these areas along with specific usage criteria for Australian Clinical Quality Registries.

Regardless of whether data capture is paper or electronic-based, the use of these data sources as soon as possible will increase the efficiency and effectiveness of registry data capture and analysis.

Data capture

There are three major options for data capture:

- Paper collection;
- Direct entry into a registry portal via electronic form; and
- Direct entry into CIS and integrated simultaneous (or near real-time) update of registry portal.

Some existing registries allow contributors to submit data using one of a number of methods. There is also an option for batch update from the local clinical system to the registry. However, this approach can lead to difficulties associated with lack of standardisation and delayed submission. Some registries have also developed data collection and submission software for local data providers to use. Such systems can be useful in incorporating data entry validation and quality checks while also ensuring standardised collection and submission of data. However, such an approach can be expensive and time-consuming and may only be effective in complex areas where large-scale de novo collection of data is necessary.
One of the key issues facing registries today is to ensure that data captured by any of these methods is consistent. Collection fields on paper and electronic forms need to be consistent. Data fields and specifications used for registry design should be consistent with the emerging standards for data entry into other clinical information systems and electronic health records systems. These standards are being developed by NEHTA and include the use of agreed data specifications and clinical terminologies (SNOMED CT). Although they will align with the existing data standards, minimum data sets (NMDS) and classifications (such as ICD10) recommended by the Australian Institute of Health and Welfare (AIHW) for statistical data sets wherever possible, there may be differences, because data used for clinical care is more extensive and granular than data used for ‘secondary purposes’. NEHTA and AIHW are undertaking work in this area to explain the distinctions, and appropriate use of these standards.

For the short term, paper capture of registry data at the point of care may still be the preferred and/or optimal method for data collection in certain cases. NEHTA is not recommending that wholesale change to electronic capture is the best approach in the short term, and the short-term architecture for registries includes paper capture as well as browser capture for data. Integrated data capture through clinical systems at the point of care is unlikely to be achievable in many cases until the introduction of more sophisticated systems within hospitals and community practices is further advanced. Registries need to be vigilant for opportunities for direct capture, as opportunities need to be assessed and included early in the design or implementation phases of new IT system roll-outs.

The most appropriate method will depend on the quantity and type of data captured for the registry, but in any case there is expected to be local preferences and constraints that will lead to use of the sub-optimal method and so it is proposed that both paper capture and electronic capture are made available, at least in the short to medium term.

The architecture also allows for direct system to system connectivity. As more sophisticated clinical systems are implemented in the health sector in the coming years, these systems will be expected to communicate seamlessly, and the NEHTA work on the Individual EHR will pave the way for this improvement in interoperability. But in the short term, system to system connectivity is expected to be problematic due to the lack of standards and the (in)flexibility of the local clinical systems. There are a few existing examples of data capture applications with a high degree of context sensitive validation which are already providing a valuable direct data source for registries (such as the AORTIC application developed by ANZICS). However, in general, direct system to system connectivity is hampered by the lack of clear, agreed business processes for exchange of information, the lack of adherence to national information standards, and the delays imposed by batch submission of data to the registry which can lead to a number of practical difficulties for data quality and completeness.
System to system connectivity is more easily achieved at a micro level, where data is then aggregated up to a macro level. Unfortunately, in Australia clinical registries currently do not have consistent organisational governance structures to allow effective and efficient national aggregation of multiple repositories. It is hoped that national collaboration to establish an Individual EHR will need to address and answer many of these issues – including development and assessing compliance with required standards.

As shown in Figure 11, the optimal use of paper-based capture involves a smaller number of simple data fields that can be barcoded and scanned. This method is especially attractive where the content can be obtained from sticky labels (as commonly used in hospitals). The labels make capture at the point of care extremely efficient and accurate. The use of barcodes makes central data entry also efficient and accurate.

Figure 11. Paper-based data capture

Where the data set involves a larger number of complicated fields, direct browser entry via a web-form at the point of care is expected to be the preferred method unless level 4 integration with the local clinical system can be achieved. This is particularly preferred as identification and correction of errors can be performed within the context (timeframe, staff and location) of the care event. Correcting errors at this point (as opposed to a week later at a central facility in another city by data entry staff) is far more efficient and successful.

The major draw back of the direct data entry is the overhead imposed in the care setting. Use of barcode scanning will also provide benefit during direct browser entry.
National registries portal

A directory of registries is a new element of infrastructure recommended by NEHTA. It will act as a single point of contact between the individual providers and the national registries. The directory would be set up as a National Portal or website which provides basic details and links as a convenience for individual providers and would be a reliable mechanism to expose the existence of registries to the individual providers who perform the critical task of data capture. The following sections provide further details.

Provider participation

Individual providers will need to identify themselves and agree to the terms and conditions of participating in a registry. This function will accept provider credentials, record their agreement and enable access to the registry.

Longer term, it will be ideal if the HPI was used to identify the individual providers and the National Identity Management infrastructure was used to validate their credentials.

In the short term, a number of local identifiers will need to be supported and demographics collected. Medicare Australia certificates could be used to authenticate individual providers for the purposes of registration and also subsequent logins. Alternatively, there may need to be a manual step to authenticate the identity of individual providers during registration.

To enable transition from the short term to the use of the HPI, it is important that multiple identifiers (such as a hospital identification number and others numbers, such as Medicare or Veterans Affairs number) are supported for a single individual provider. Not only will this help manage the many disparate identifiers in use today, it will allow the addition of the HPI more readily when it becomes available. The demographics collected should also align to the minimum needed by the HPI service to perform a unique search. For further information on minimum standards for identifiers, refer to Part B: Technical standards – Standards Map.

To assist with maintaining unique identifiers, the local identifiers will support the addition of a namespace prefix. Once an identifier is associated with an individual provider, it can be used to identify the provider to any of the registry functions.

The individual provider will be supplied with login credentials to access the registry functions. Once the Identity Management infrastructure is in place, these registry specific credentials can be retired and the national credentials used to access all registries.

Patient consent

Individual providers will be responsible for gaining and recording patient consent. This process may also record the identity of the patient. This process would be supported either via paper or directly via the browser.
Longer term, it will be ideal if the IHI was used to identify the patient, thereby allowing confidence in the aggregation of longitudinal patient-centric data to maintain currency of the required data and/or to collect outcome data.

In the short term, each register will need to allocate a new patient identifier and support the searching functions to allow providers to find existing patient identifiers to reduce duplicates.

The registry will need to support the use of multiple identifiers, qualified with a namespace to allow linkage between other data sources and to simplify inclusion of unique identifier when it becomes available.

To support patient privacy, the identifiers kept in the registry may point to an independent external party that is custodian of linkages to other data sources. This may also apply for linkage to the IHI for certain de-identified registries.

Registry events

Individual providers will be responsible for collecting the required registry data. Assuming consent has been confirmed and/or gained, this will involve filling out the data as specified by the registry, either via paper or direct browser entry.

Over time, all captured data should be captured and coded in a standardised fashion according to national standards i.e. with agreed terminology (SNOMED/AMT) being used to populate standardised data sets (NEHTA data specifications, AIHW, etc.). For further details refer to Part B: Technical standards – Standards Map.

The data which relates to an entity should also be identified via a standardised unique identifier, including identifying the Individual Providers involved (HPI), the Patient (IHI), and the products used (NPC).

In the short term, each register will need to publish (via the National Registry Portal) a comprehensive guide to encourage individual providers to collect consistent and coded data. The guide will need to contain clear descriptions of each field, unambiguous definitions of the data values, and a list of the applicable codes.

The difficulty in transitioning to use national standards is that the transition will impact the historical integrity of the existing data captured. This is generally handled by conversion of historical data, generic real-time mapping from older versions to the current version, or a combination of both. All approaches can introduce errors and all approaches impact on the resource usage/profile of the system. Early adoption of these standards, specifically SNOMED, AMT, NPC, and the data specifications, while increasing short-term cost and requiring fine tuning, would reduce the potential disturbance at some point in the future.
Report requests

Individual providers will need convenient access to information derived from their data capture efforts. Registries should optimally support:

- Online requests for reports which are returned to the provider while they wait.
- Scheduled reports to be generated periodically and automatically sent to the provider.

The available reports will need to include two types of reports:

1. Reports that contain analysis of the data contributed by the individual provider (requester). These reports may contain identified data.
2. Reports that compare aggregated data (e.g., benchmarks) between the individual provider (requester), peer groups, regions (e.g., states) and nationally (or even internationally).

Reports will need to support some customisation, via the collection of pre-determined parameters that are used to generate the report. Typically these parameters will be report-specific and include, date ranges, filter criteria, and sort criteria.

For further details about reporting, refer to *Part A: Operating Principles*.

Design considerations

The following sections describe some of the design considerations that should be borne in mind when developing a registry.

Authentication

The short-term architecture does not address the issues around consistent login credentials for access to the registries. Each registry has the potential to issue the individual provider with a separate set of credentials. At a minimum each registry should allow individual providers to select their own passwords, PIN codes, etc so they can achieve some consistency between registries. In addition, assuming multiple identifiers are supported for all registries, the individual provider may be able to use one of their identifiers consistently across all of them, until they have a HPI.

It is also expected that individual providers will need to authenticate themselves multiple times throughout their day and from multiple locations. When multiplied across multiple registries and taking into account the many local systems they are required to access, this may create an unreasonable burden. A distributed approach to authentication could be considered which allows individual providers to gain a token that can be re-used until it expires. The OpenID framework is recommended for this purpose.

Secure messaging

Most interactions with a registry contain private information. These interactions need to be protected from intercept, access and modification. It is expected that the NEHTA Secure Messaging standards will be applied for all interactions between individual providers and the registries.
Application tiers

As shown in Figure 11, whether the individual provider is using paper or a browser, the data entry, and interaction with the system is likely to be via a browser. The user interface tier is likely to be via a web application user interface framework.

It is recommended that the user interface tier be built on top of a middle tier of web services. The web services would conform to the NEHTA Secure Messaging standard. The main advantage is that this middle tier supports the transition to direct connections with other systems, as shown in Figure 12.

It is expected that the database tier is based on a Relational Database Management System (RDBMS) product with access via Structured Query Language (SQL). However, irrespective of the product used, the key functionality is the ability to inter-connect.

![Figure 12. Application tiers](image)

It is possible that other channels may also be used, such as mobile devices, thick client over web services, integration with third-party applications, etc. The architecture will need to be flexible enough to support evolution of interfaces.
Long-term architectural vision

This section is intended to prompt thinking about the way clinical registries operate and the long-term goals of registries in an ideal environment. It is recognised that such a vision may not be achieved. It is unrealistic to attempt this scale of change in the short term. The proposed short-term architecture has been specifically designed to be realistic in the short term, but to also allow for migration to the longer term vision described in this section.

Business issues

NEHTA has identified that the two main business issues related to architecture currently facing clinical registries in Australia are:

1. Duplicate recording of clinical data (both for local use at point of care and separate capture repeated potentially across multiple registries) increases data captures errors and is resource intensive requiring skilled staff and their time.

2. The current system relies on the registry knowledge of each individual clinician that can lead to under-reporting or inappropriate reporting.

Vision overview

The long-term architecture vision (Figure 13) is specifically designed to tackle both of the identified business issues.

Figure 13. Long-term architecture overview
In Figure 13, the national infrastructure connects the individual providers, shown on the left, with the clinical registries, shown on the right. The national coordination components are logically central and represent central management of the functions. It is this central nature that addresses the first business issue of appropriately connecting the individual providers nationally with the many registries.

This, however, does not mean that the national coordination components all physically sit on a single national server. Ideally, selected components of the national infrastructure would be implemented in a distributed fashion. The individual providers will use local clinical systems to perform the normal clinical data entry as required by the primary task of providing care to the patient. It will be the responsibility of these systems to prompt the individual providers when an event of patient care qualifies for entry into a registry (this may be the first defining registry event or follow-up to obtain outcome information). It will also be the responsibility of these systems to prompt the individual providers in an efficient manner to obtain any necessary consent and capture the necessary clinical data to be submitted into the registry. This addresses the guiding principle to minimise the impact on individual providers and automate tasks.

The clinical registries, shown on the right, would all interface with the national infrastructure, providing by default a consistent, single point of access. The national infrastructure will also support a standards-based approach to the implementation and management of the registries.

It is assumed here that registries will remain separate, purpose-built information stores. Registries may also gather data from many sources, including administrative datasets, the Individual EHR and non-clinical registries. There could be the capacity for a registry to notify the Individual EHR when the Individual EHR is missing data that may be uncovered during the consistency check processing. The submit processing may also copy registry events to the Individual EHR.

If analysis highlights that additional information is required, the registry can be augmented to store the additional information permanently or temporarily link to it from another source.

The following sections provide a more detailed description of the proposed national infrastructure components.

Eligibility criteria and data specifications

The primary responsibility of this component will be to publish and maintain the eligibility criteria and data specifications for each registry to the local clinical systems (Figure 14).

The eligibility criteria will be in a computer-processable form and will allow automated assessment of a patient event. Determination of whether any data needs to be captured for any of the registries will be based on:

- the individual provider and their role (for example either the treating provider or the pathologist reports the event – not both);
- the patient (for example demographics); and
Each registry entity will be responsible for maintaining the eligibility criteria and data specifications in this component. It is expected that this would be a manual task. Local clinical systems will automatically synchronise with this component to receive any updates.

The local clinical systems will automatically process each patient event (in real time) to determine if the event has registry implications. The local clinical system will notify the individual provider of the candidate registries that a patient event qualifies for. The local clinical system will then assist the individual provider to satisfy the registry requirements. This would include:

- Pre-filling the patient and individual provider demographic details required;
- Prompting the individual provider to collect the appropriate consent;
- Pre-filling any clinical data required from the data already captured;
- Prompting the individual provider to collect any clinical data gaps required by the data specifications for the registry; and
- If the registry was mandatory and the required data has already been captured, the local clinical system may be able to fulfil all the registry requirements without even interrupting the individual providers (workflow or attention).
Patient consent and provider participation

This component is responsible for ensuring the patient consent and participation of providers for each registry is recorded in a secure, consistent and appropriate way. This component will provide a centralised function that brokers the registration of patient consent and provider participation on behalf of each registry. The final acceptance of each request will be the sole responsibility of each individual registry (Figure 15).

Figure 15. Long-term architecture – Participation

The persistent storage of the record of consent/participation will be the joint responsibility of this component and each registry. This component will be the master record of the patient wishes/provider agreements and the registries will be the master of what they have individually accepted.

The local clinical systems will forward the collected consent/participation details to this central component which will provide authentication, audit, pre-qualification of conditions and non-repudiation services for the request providing proof of the data’s origin and integrity. Successful requests to participate are then forwarded to the relevant registries for acceptance.

Submitting events

This component is responsible for providing authentication, audit and non-repudiation services and accepting (from the local clinical system) the required data to submit into a registry. The submission is forwarded to the relevant registries for acceptance (Figure 16).

This component will not retain any data other than an audit trail. The registries are solely responsible for storing the clinical data.
Figure 16. Long-term architecture – Event submission

This component will be distributed close to the data source end points. Submission will be directly to the registries and will not go through a central hub. The component may be implemented directly in local clinical systems or as part of the common infrastructure along side the local clinical systems.

Reporting

This component is responsible for providing a central point of access to the reporting capabilities of each registry. It will present a list of the applicable registries (that is those where the provider is registered) and provide authentication services. This provides convenient access to all the reports available to an individual provider (Figure 17).
Part B: Technical standards – Architecture overview

Figure 17. Long-term architecture – Reporting

Users will be able to request a report online or schedule reports to be sent to them. Online reporting will allow selection from the available reports, parameters, and output format. Scheduled reporting will allow selection from the available reports, parameters, preset frequencies (for example, weekly) and destination email address where the report will be sent.

This component is not responsible for executing the reports, the request for a report is sent directly to the registry and the response is returned directly to the user from that registry.

Where a registry has its own reporting portal, the user may be referred directly to it. In this case the user would then interact directly with the registry’s own reporting portal and this component would simply be a single access or referral point.

It is expected that only the results of the reports will be accessible to the users and that they will not be able to access raw data. It is also expected that they will not only be able to print the reports, but they will be able to receive the results in a number of different formats (CSV, XML, MS Access, etc.).

Linkage for checking consistency and completion

This component is responsible for improving the quality of the registry content. It will provide data consistency and quality checking by comparing data in the clinical registries with each other and the following external sources, as shown in Figure 18:

- other registries (i.e., Births, Deaths and Marriages, National Death Index);
- the Individual EHR; and
- other sources of clinical and administrative data.
This checking will be specific to each pair of compared data sources, for both the method of access to the data and the logic required to validate the consistency. Checking will occur both before and after submitting data to a registry.

Ideally, checking would be performed during data capture, or immediately before the event is actually submitted to a registry. This provides timely feedback to the provider while they are still able to efficiently correct any errors.

This component would be notified of the entered data and would then trigger a number of cross checks with other data sources. The logic may be executed centrally by this component or delegated to services provided by the registries themselves.

Any inconsistencies would ideally be sent back to the provider during data entry. For example, the identity of the patient is incorrectly entered and the provider is immediately notified that the identity specified is known to be deceased. The provider can correct the mistake before it even makes it to the registry.

It is important to ensure that data entry is not delayed if the consistency checks are not possible or can not be completed in time. This would normally imply that the checking is performed asynchronously.

Certain cross checking will need to be done in bulk/batch mode, where a large quantity of records is checked one-by-one against another set of records. In some cases full database scans may be required that would need the local registry infrastructure to execute the query and checking logic.
This type of cross checking would be scheduled in off-peak times and would not form part of the data entry process. For example, checking all the procedures performed in the last six months from a clinical registry against a payment database.

Linkage can also be used to check completeness of data held in the registry or to upload identified information into a registry. For example, an outcome registry that records information from multiple providers may benefit from uploading of certain identified data fields from a single point of collection such as the Individual EHR, as opposed to uploading duplicate data provided by multiple clinicians via a web upload or other type of submission.

Unique Healthcare Identifier

This component will be nationally provided infrastructure (independent of the registry infrastructure) to support the allocation of a unique identification number for all patients, individual health care providers and healthcare organisations.

The other components would use the Unique Healthcare Identifier (UHI) services to find the unique identifier for patients and health care providers and then use these identifiers internally to register providers and capture data against the correct patient.

Authentication, access control and secure messaging

This component will be nationally provided infrastructure (independent of the registry infrastructure) to protect the security of the systems and exchanges of information. Services provided will allow authentication of users, assignment of privileges, and support to communicate clinical data between organisations and systems so that it cannot be tampered with or viewed along the way. The latter relates to Secure Messaging which will include a number of standards that are applied to the development of the interfaces.

An important part of electronic communications is that, in order to communicate with others you require knowledge of which parties and services are available for communication. All the services provided by the national infrastructure and each registry would be published in a Service Instance Directory (SID). This will be provided by this component.

The other components would use these services and apply the required standards to make sure only authorised Providers can contribute protected data about their identified Patients. In addition, Providers will only be able access data they have been authorised to access.

For further information on Secure Messaging please refer to the NEHTA website:

Clinical communication

This component will be nationally provided infrastructure (independent of the registry infrastructure) to support the capture of clinical and product data in an unambiguous way.

In order to achieve interoperability, the use of structured data specifications, standardised terminology and codesets will ensure that clinical content from any of the data sources can be understood accurately by any of the providers and enable computer systems to understand and compare the content. This will require application and integration of data standards from numerous sources such as NEHTA (SNOMED CT, Clinical Information Data Standards), AIHW (National Health Data Dictionary).

Using a standardised National Product Catalogue (NPC) for medical product identification will ensure that the identification of products used in health care is associated with clinical context and individuals. This supports detection of faulty designs and batches due to outcome analysis and the identification of affected Individuals.

The other components would use these services to make sure the clinical and product data is captured and stored in a standardised way that can be later analysed as required without error.

For further information on Clinical Communication please refer to the NEHTA website:
Part B: Technical standards – Standards Map

The Standards Map lists standards that those developing and implementing an Australian Clinical Quality Registry should be cognizant of. It is not intended as a prescriptive list of standards that every registry must comply with. Given the scope and purpose of a given Australian Clinical Quality Registry a varying subset of these standards may be relevant.

The standards listed here are current at the time of writing. It is recommended that you check the current status, and version where applicable, for any given standard.

Overview

The number of clinical registries in Australia has grown markedly in recent years as has interest in the establishment of new clinical registries to ensure quality in the provision of health care. To date there is no single standard or shared methodology for the development, establishment and ongoing management of clinical registries. Clinical registries in Australia vary in their purpose, design, scale, and scope and as such there is little continuity in their design.

The Architecture Overview and Technical Standards recommended by NEHTA will have varying degrees of application at different stages of development, dependent on the maturity of each individual registry. For example, a small local registry with a paper-based data collection entered into a Microsoft Excel or Microsoft Access database in a non-networked computer will have very different needs to a large international registry that uses a browser-based user interface to collect information and electronically cross-checks information for validity in real time with external data collections.

To enable those individuals and agencies responsible for clinical registries to easily navigate the architecture and standards developed by NEHTA and determine their applicability registries have been divided into four registry types (Figure 9). These types have been determined by the level of technology utilised in the collection, storage, cleansing, quality checking, analysis and reporting of data. Australia currently has registries representative of all four types. These are as follows:

1. Level 1: Stand-alone registry.
 - Paper-based submission of data to the registry; and
 - Data entry into a stand-alone computer system for analysis and reporting.

2. Level 2: Web-based submission of data into the registry.
 - Allows some or all contributors to submit data to the registry electronically via web browser user interface, this may be combined with paper-based reporting.
3. Level 3: Web-based submission of data into the registry and electronic cross-checking of data or linkage of data with an external system.

- Allows some or all contributors to submit data to the registry electronically via web browser user interface, this may be combined with paper-based reporting; and
- Cross-checks data with external sources for validity (either in real time or after data entry), or
- Links with external systems to link data.

4. Level 4: All level 3 plus automatic data collection from local clinical systems.

- Local clinical system is the primary vehicle for data collection, relevant data is either automatically sent or prompted to be sent to the relevant registries.

The following matrix (Table 6) provides an overview of the standards map noting the NEHTA-relevant standards and their applicability to each type of registry (levels 1–4). Whilst this may identify some standards as optional in some settings, this will always be a value-judgement which needs to be considered in the context of future capacity or plans to expand the scope, nature or purpose of the registry.

This standards map has been organised based on the NEHTA domains. For each domain a list of the recommended standards is provided. Each standard (or group of standards) is documented with the following sections containing content applicable to the proposed architecture:

- Overview
- Motivation
- Usage criteria
- Comments (where applicable).

The majority of the content for the Overview, Motivation and Comment sections has been taken from the Standards Catalogue on the NEHTA web site http://www.nehta.gov.au.

The Usage Criteria has been tailored to be applicable to clinical registries and describes how the document relates to Australian Clinical Quality Registries. Only those standards with some relevance to Australian Clinical Quality Registries have been included from the NEHTA Standards Catalogue.

<table>
<thead>
<tr>
<th>Relevant standards</th>
<th>NEHTA recommended standard</th>
<th>Level 4 Automatic data collection</th>
<th>Level 3 Two-way linkage</th>
<th>Level 2 One-way submission</th>
<th>Level 1 Stand-alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interoperability Framework (eg. Architecture)</td>
<td>Interoperability Framework</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>Unified Modelling Language v2.0</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Not required</td>
<td>Not required</td>
</tr>
<tr>
<td></td>
<td>TOGAF</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>Information Technology – Open Distributed Processing</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Clinical Communications</td>
<td>Terminology</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Recommended</td>
</tr>
<tr>
<td></td>
<td>Data Specifications</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td>HL7 Messages</td>
<td>Required</td>
<td>Required</td>
<td>Not required</td>
<td>Not required</td>
</tr>
<tr>
<td></td>
<td>Datatypes</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Unique Healthcare Identification</td>
<td>Health Care Provider Identification</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td>Health Care Client Identification</td>
<td>Required</td>
<td>Required</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Identity Management</td>
<td>Authentication Assessment Methodology</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>Framework for Analysing, Planning and Implementing Identity Management</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>Identity Management resource Set</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>AGAF</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>ACSI 33</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>Security Techniques</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>OASIS eXtensible Access Control Markup Language (XACML) TC</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>OASIS Security Services (SAML)</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Secure Messaging</td>
<td>Web Services</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Not required</td>
<td>Not required</td>
</tr>
<tr>
<td></td>
<td>XML</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Not required</td>
</tr>
<tr>
<td>Supply Chain</td>
<td>Supply Chain</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Recommended</td>
</tr>
<tr>
<td>Engagement & Adoption</td>
<td>Understanding Standards</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>CGOI and Communication Technology</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Table 6. Technical standards overview
E-health interoperability

NEHTA has identified a number of standards pertinent to ensuring the interoperability of Australian Clinical Quality Registries. These include:

- Interoperability Framework v2.0
- Unified Modelling Language v2.0
- TOGAF “Enterprise Edition” v8.1
- Information technology – Open Distributed Processing.

Interoperability Framework v2.0

Overview

This document describes the Interoperability Framework, version 2.0. The Interoperability Framework (IF) is a common reference point that provides guidance to business and IT experts in delivering interoperable e-health systems in Australia – while allowing for the evolutionary and emergent aspects of business, policy and technology.

Version 2.0 provides a number of extensions, refinements and guidelines for applying the interoperability approaches and concepts to e-health systems, including enterprise architecture, certification principles and interoperability maturity model.

Motivation

The Interoperability Framework is developed to promote a shared understanding about different aspects of e-health system and for various e-health stakeholders involved. This understanding is enabled through interoperability concepts and patterns, addressing separate, but related aspects of e-health systems i.e., organisational, informational and technical aspects.

The IF includes a methodology, which emphasizes a disciplined approach in delivering fit-for-purpose systems, where specifications play an important role, providing a bridge between requirements and conformant systems.

Usage criteria

The IF concepts and patterns can be used within various e-health projects and jurisdictions to deliver specifications for e-health systems based on clearly stated organisational, informational and technical requirements. These specifications will need to include definition of conformance points to facilitate certification of implementations against specifications. The IF concepts and patterns are valuable tools in delivering downstream enterprise architectures at national, State, Territory or domain levels.
Unified Modelling Language v2.0

Overview
constructing, and documenting the artefacts of distributed object systems. UML is a set of specifications published by the Object Management Group (OMG). UML can be used to describe requirements for building a system, model structural and behavioural relationships between components in a software system and support the expression of business process models.

Motivation
UML has become a de facto modelling notation used for describing business requirements, structural and behavioural models constituting architecture of software systems. UML plays a central role in many software development methodologies.

Usage criteria
UML can be used as a modelling notation to represent different architecture modelling concepts proposed by the NEHTA Interoperability Framework, as well as Enterprise Architecture and Solution Architectures.

UML 2.0 is based on better semantic foundation allowing more precise expression of modelling concepts such as UML activity diagrams. Therefore, NEHTA recommends UML 2.0 (in preference to UML 1.4.2) for use as a modelling notation.

TOGAF “Enterprise Edition” v8.1

Overview
The Open Group Architecture Framework (TOGAF), Enterprise Edition is an architecture framework – a set of methods and tools for developing a broad range of different IT architectures. It enables IT users to design, evaluate, and build the right architecture for their organisation, and reduces the costs of planning, designing, and implementing architectures based on open systems solutions. There are four main parts to the TOGAF document:

- **PART I – Introduction**: This part provides a high-level introduction to some of the key concepts behind enterprise architecture and in particular the TOGAF approach.
- **PART II – Architecture Development Method**: This is the core of TOGAF. It describes the TOGAF Architecture Development Method (ADM) – a step-by-step approach to developing an enterprise architecture.
- **PART III – Enterprise Continuum**: This part describes the TOGAF Enterprise Continuum, a virtual repository of architecture assets, which includes the TOGAF Foundation Architecture, and the Integrated Information Infrastructure Reference Model (III-RM).
- **PART IV – Resources**: This part comprises the TOGAF Resource Base – a set of tools and techniques available for use in applying TOGAF and the TOGAF ADM.
Motivation

The Open Group Architecture Framework (TOGAF) is an open standard that provides a technology neutral framework for developing enterprise architectures, covering the constituent business, information systems and technical architectures, while providing guidance for the architecture deployment and governance.

TOGAF can be tailored for the needs of specific industries or sectors such as e-health. NEHTA’s tailoring of TOGAF includes the use of the NEHTA Interoperability Framework concepts as an architecture description language for building interoperable systems. This combination provides a powerful basis for long-term evolution of enterprise architectures in the Australian e-health environment in spite of technological, business, regulatory or legislative changes.

Usage criteria

TOGAF can be used to develop Enterprise and Solution Architectures for various e-health segments, within or across organisational or jurisdictional boundaries. NEHTA has chosen TOGAF as a vehicle for facilitating a disciplined and consistent approach to architecture development for national e-health infrastructure with which NEHTA is tasked. The NEHTA Interoperability Framework provides a set of modelling concepts essentially forming an architecture description language for national e-health infrastructure developments.

Comments

In order to achieve the highest degree of e-health alignment and effective engagement among stakeholders within the Australian e-health environment, NEHTA recommends the adoption of TOGAF for respective enterprise architecture developments.

Information technology – Open Distributed Processing

Overview

The following documents provide detail on understanding and applying Open Distributed Processing (ODP) as specified in the ISO/IEC 10746 group of standards:

Motivation

There is currently a lack of an existing precise framework for modelling enterprise aspects of open distributed systems, which is of great relevance for cross-organisational and cross-jurisdictional nature of e-health systems in Australia. The ODP-EL (enterprise language) provides a generic framework, yet with a sufficient precision, needed for the organizational perspective of the Interoperability Framework.

These standards provide a technology-independent architecture framework, supporting the ‘separation of concern’ principle, which allows for the specification of complex systems from different viewpoints. It has a high level of precision commensurate with the formalism adopted (and which exploits constructs from different standardized formal description techniques). Over the years, ISO/IEC 17046, as a standardization framework, has influenced development of a number of specific industry standards such as OMG and OASIS.

Usage criteria

NEHTA recommends compliance with these specific standards when describing the organizational roles, processes, policies and communities as a context for positioning computing systems and other technology solutions in support of delivery of healthcare services.

The modelling concepts, structuring rules and architecture principles from these standards can be used to provide architecture specifications of complex systems, from different viewpoints and in a technology-neutral manner. The standards also provide a clear conformance and compliance framework that can be used for various certification purposes, which has been leveraged within the NEHTA Interoperability Framework.
Clinical communications

NEHTA has identified a number of standards pertinent to clinical communications for Australian Clinical Quality Registries. These cover:

- Data specifications
- Terminology
- Data exchange
- Datatypes.

Data specifications

Overview

NEHTA has developed a suite of data specifications to standardise various clinical concepts to form structured clinical documents. These data specifications are intended for use at point of care. NEHTA is working with the Australian Institute of Health and Welfare (AIHW) to ensure data specifications are consistent with the National Minimum Data Set (NDMS) and metadata in MeTEOR (the Metadata Online Registry). For further information about the AIHW and MeTEOR, refer to the AIHW website at http://www.aihw.gov.au.

The library contains both:

- *Data Specifications* for particular health topics i.e., foundation ‘data groups’ such as problem/diagnosis, clinical intervention, adverse reactions; and
- *Content Specifications* for structured clinical documents such as discharge summary and referral, which make use of the foundation data groups.

As of mid-2008, the list of data specifications includes:

- NEHTA 0013:2006 Medication Data Specifications v1.0
- NEHTA 0032:2006 National Discharge Summary Data Content Specification v1.0
- NEHTA 0058:2007 General Practitioner and Specialist/Critical Care Referral Data Content Specifications v1.0
- NEHTA 0082:2007 Pathology Data Specification v1.0
- NEHTA 0093:2007 Diagnostic Imaging Data Specification v1.0
- NEHTA 0133:2007 Adverse Reaction Data Specification v1.0
- NEHTA 0134:2007 Alert Data Specification v1.0
- NEHTA 0135:2007 Clinical Intervention Data Specification v1.0
- NEHTA 0136:2007 Clinical Synopsis Data Specification v1.0
- NEHTA 0137:2007 Immunisation Data Specification v1.0
- NEHTA 0138:2007 Observation Data Specification v1.0
Motivation

These data specifications can be used by system designers to implement level 4 (semantic) interoperability in the Australian health care setting. Semantic interoperability means that the information exchanged by different computer systems can be interpreted by both computer applications and human users.

Usage criteria

NEHTA data specifications are aimed at standardising the information structure and language used to name and describe clinical concepts, and to provide the necessary contextual constraints to remove potential ambiguity in clinical statements. They are not intended to be software or messaging design specifications. Instead, they represent the clinical information requirements for data collection and information exchange required for facilitating safe and effective continuity of care across health care i.e., General Practice and Acute Care.

It is expected that these specifications will be used in conjunction with other NEHTA-provided specifications such as the Australian Medicines Terminology (AMT) and other SNOMED CT-based clinical terminologies.

These specifications should be applied when data is captured for storage in a registry that overlaps with any of the topics in the data groups or documents. It is expected that the data groups will be more applicable in the Registry setting than the clinical documents.

Terminology

Overview

SNOMED CT (Systematised Nomenclature of Medicine, Clinical Terms) is a comprehensive and precise clinical reference terminology. Terminology is used to populate data specifications. It provides an extensive list of clinical terms and identifiers that allows complex clinical concepts to be described in a way that computers can interpret. SNOMED CT operates at many levels including history, examination, provisional diagnosis, test results, and treatment.

The Australian Medicines Terminology (AMT) release is a national extension of SNOMED CT for use within information systems within Australia to define and describe medicines and related concepts. This release contains the products listed on the Schedule of Pharmaceutical Benefits.
The AMT delivers standard identification of branded and generically equivalent medicines and their components. It also provides standard naming conventions and terminology to accurately describe medications. The terminology is for use by medication management computer systems, in both primary and secondary health care.

As of mid-2008, the relevant terminology specifications are:

- NEHTA 0143:2007 Australian Medicines Terminology v1.0 – Data
- NEHTA 0144:2007 Australian Medicines Terminology v1.0 - UML Class Diagram v7.0
- NEHTA 0145:2007 Australian Medicines Terminology v1.0 - Editorial Rules v2.0

It is recommended that readers confirm the currency of the above relevant terminology specifications when applying them to clinical registries to ensure they are up to date by checking the Standards catalogue on the NEHTA website:

Motivation

NEHTA is responsible for defining a national approach to clinical terminology, to support the efficient and accurate electronic recording and exchange of clinical information across the health sector. Essential to this work is access to SNOMED CT and the AMT extension. These specifications will assist technical stakeholders in adopting standard terminologies in software applications used to store clinical information.

Usage criteria

These terminology specifications should be applied to all clinical data captured for storage in a registry.

Access to this material is limited to those holding license agreements managed by NEHTA:

- The SNOMED CT Affiliate License Agreement for access to SNOMED CT Core; and
- The Australian National Terminology Release License Agreement to provide access to extensions and derivatives supplied by NEHTA.
Data exchange

Overview
Defines how Australian healthcare organisations implement the global Health Level Seven standard (for the various selected 2.x versions) for communication of patient administration and clinical information. Australia currently uses HL7 version 2 for data exchange. However, NEHTA has recommended and supports the move to HL7 Clinical Document Architecture (CDA). These specifications are suitable for use within Australian public and private healthcare organisations.

The clinical specifications provide consistent use of data definitions as well as commentary and references to the International Organization for Standardization (ISO) and the National Health Data Dictionary.

The list of recommended messages can be found on the NEHTA website on the following URL:

Motivation
Standardised messages support independent system vendors developing interoperable interfaces. NEHTA has selected these standards because they are currently in use in a number of different sites in the Australian health care environment and are consistent with the direction recommended in the Standards for E-Health Interoperability v1.0, 08/05/2007.

NEHTA’s recommendation for the use of these standards is on an interim basis. As discussed above, the future direction recommended by NEHTA in the Standards for E-Health Interoperability v1.0 is based on CDA.

Usage criteria
These standards should be used when transferring messages containing the relevant content from the capture systems to the registry storage systems. In general, the more recent versions of the standards are preferred. Older versions are used when interfacing with existing ICT systems that do not support the more recent versions of HL7 interfaces.

Datatypes

Overview
The ISO/IEC 11404 international standard specifies the nomenclature and shared semantics for a collection of datatypes commonly occurring in programming languages and software interfaces, referred to as the Language-Independent (LI) Datatypes. It specified both primitive datatypes, in the sense of being defined without reference to other datatypes, and non-primitive datatypes, in the sense of being wholly or partly defined in terms of other datatypes.
Motivation

These datatypes are foundational components that are used in many industries, not just health care. Standardising across industries will facilitate software developers and language-specific implementations to more readily interoperate without a requirement to introduce error-prone mappings.

Patient safety and the quality of data for decision support and secondary use depends on standardised and known representations of fundamental datatypes. The volume of systems potentially exchanging and processing information dictate such a requirement. Furthermore, e-health requires standardised additional compound datatypes such as quantities and special timing datatypes that need to be built from the standardised primitive datatypes described in ISO/IEC 11404.

Usage criteria

The data definitions used in the design of all the registry components, including data capture interfaces, databases and reporting, should be based on the datatypes in this standard.

Comments

ISO is currently considering a proposal for additional datatypes to meet the specific requirements of health care.
Unique healthcare identifiers

A number of unique health identifiers (UHIs) have been under development and should be available and useful for Australian Clinical Quality Registries. These refer to both:

- Provider identification and
- Client identification.

For further information, also refer to Unique Healthcare Identifiers (UHI) on page 69.

Provider identification

Overview

The AS 4846-2006 standard provides a framework for improving the positive identification of health care providers. The standard applies in respect of all providers of health care services to the Australian health care system. It defines demographic and other identifying data elements suited to capture and use for identification in health care settings and provides guidance on their application. It also makes recommendations about the nature and form of health care provider identifiers. It includes only the minimum dataset required for unambiguous identification. It is a generic set of identifying information which is application-independent.

The objective of this standard is to promote uniform good practice in:

- Identifying both individual and organisational health care providers;
- The recording of health care provider identifying data; and
- Ensuring that data being associated with any given health care provider, and upon which clinical communication and data aggregation are based, are appropriately associated with that individual or organisation and no other.

Motivation

This standard was used as a foundation standard for Healthcare Provider Identifier (HPI) data elements, process of information collection (recording) and data management (data matching and linking).

This standard is currently being used as the basis for capturing provider identity information in some jurisdictional systems.

Usage criteria

This standard should be used when recording identification and demographic details for a healthcare provider. This is relevant for both participation in Australian Clinical Quality Registries and to identify authorship of clinical data.
Comments

NEHTA has contracted Medicare Australia to design, build and test the Unique Healthcare Identification (UHI) service which includes the HPI and Individual Healthcare Identifier (IHI). To obtain an HPI, participants will need to be currently registered and have signed a participation agreement. Further details will be provided on the NEHTA website as the service is developed (http://www.nehta.gov.au).

Client identification

Overview

The AS 5017-2006 standard provides a framework for improving the positive identification of clients in health care organisations. This standard applies in respect of all potential or actual clients of the Australian health care system. It defines demographic and other identifying data elements suited to capture and use for client identification in health care settings, provides guidance on their application, and provides an overview of data matching strategies. It also makes recommendations about the nature and form of health care identifiers.

Accordingly, this standard includes only the minimum dataset required for unambiguous identification. It is recognised that specific applications may require additional data to fulfil their purposes. The standard provides a generic set of identifying information, which is application independent.

Motivation

This standard is used by NEHTA as a foundation standard for the IHI system, particularly in the area of the implementation of client master indices and the use of appropriate and thorough searching techniques for the IHI system in ensuring that any existing client data will be linked to the relevant health care client.

This standard is currently being used as the basis for capturing client identity information in some jurisdictional systems.

Usage criteria

This standard should be used when recording identification and demographic details for a healthcare client. This is relevant for both participation in Australian Clinical Quality Registries and to identify the subject of clinical data.

Comments

NEHTA has contracted Medicare Australia to design, build and test the Unique Healthcare Identification (UHI) service which includes the HPI and IHI. Further details will be provided on the NEHTA website as the service is developed (http://www.nehta.gov.au).
Identity management

NEHTA has identified a number of standards pertinent to identity management for Australian Clinical Quality Registries. These include:

- Authentication Assessment Methodology v1.0
- Framework for Analysing, Planning and Implementing Identity Management v1.0
- Identity Management Resource Set
- Australian Government Authentication Framework
- ACSI 33
- Security techniques
- OASIS eXtensible Access Control Markup Language (XACML) TC
- OASIS Security Services (SAML) TC v2.0.

Authentication Assessment Methodology v1.0

Overview

The Authentication Assessment Methodology describes a business process to be followed when attempting to establish authentication requirements for online healthcare transactions. It presents a risk-based approach which closely follows the structure of the Australian Government Authentication Framework (AGAF). For further information about AGAF, refer to Australian Government Authentication Framework on page 109.

Motivation

The purpose of this document is to provide healthcare organisations a single point of reference to use when analysing their user authentication requirements. The risk-based analysis helps identify the level of authentication required and assist with the selection of authentication mechanisms and implementation planning.

Usage criteria

The process outlined in this methodology should be applied when assessing authentication requirements for access to Australian Clinical Quality Registries.

Framework for Analysing, Planning and Implementing Identity Management v1.0

Overview

This document provides a framework to assist in the analysis, planning and implementation of Identity Management within healthcare systems. It identifies the issues that all healthcare providers and all E-Health infrastructural services will have to ‘agree upon’ in order to ensure security and trust across the E-Health Community, as well as technical and process robustness, and interoperability of identity and access elements across all stakeholders.
Motivation

The purpose of this document is to assist with the identification of the issues that healthcare providers and infrastructural service providers will need to address in order to specify, implement and maintain a secure and trusted e-health environment. As such this document provides the background to and overview of NEHTA’s Identity Management (IdM) initiative. It introduces and positions a range of detailed IdM resources that will guide organisations and communities within the sector towards secure, efficient and seamless E-Health transacting across the sector.

Usage criteria

Although this document is broader than the architecture and design of the registry software systems, this document is essential background reading for users who have an interest or responsibility in the area of securing online healthcare environments. Having a common and shared understanding of the issues involved with the identification and authentication of individuals and organizations as they transact electronically is essential in order to ensure the successful implementation of national E-Health systems.

Identity Management Resource Set

Overview

The Identity Management Resource Set describes at various levels all the components needed to design and implement identity management solutions for healthcare systems. The set contains the following standards:

- NEHTA 0100:2007 Identity Management Resource Set Building Blocks Layer v1.0
- NEHTA 0102:2007 Identity Management Resource Set Standards Layer v1.0
- NEHTA 0103:2007 Identity Management Resource Set Templates Layer v1.0

The Building Blocks layer of the Resource Set is comprised of the Identity Management components, technologies and techniques that an organisation may utilise to assess and develop their identity management requirements.

The Guidelines Layer contains positions and guidelines to key issues identified as being on the critical path for health organisations wanting to join the e-health environment or improve their own identity management systems.

The Standards Layer provides details on standards that organisations and e-health initiatives can utilise to determine the best fit for their identity management needs in line with the National E-Health Identity Management Framework.
The Template Layer presents a collection of useful models and checklists that organisations can use to progress various aspects of the design, development and deployment of intra-organisational and cross-sectoral identity management.

Motivation

The purpose of this document is to provide a ‘toolbox’ from which identity management solutions in health can be constructed.

The components, technologies and techniques presented provide details that can be utilised by health organisations to determine the best fit for their identity management needs in line with the National E-Health Identity Management Framework.

The selection of existing standards where possible upon which to build identity management solutions for health is seen as desirable to both capitalise on existing expertise in identity management and promote interoperability between systems.

In particular, for NEHTA 0101:2007, the identification of and response to key identity management issues for e-health is intended to help focus attention where it is most needed.

Usage criteria

These documents should be used when the registry systems are being analysed, designed, and implemented to help guide the identity management aspects of the solution and ensure conformity with the NEHTA-prescribed Identity Management Framework.

The standards included cover multiple aspects of identity management system components development ranging from the risk based assessment of authentication needs to the specific implementation of a selected authentication mechanism.

The guidelines are particularly relevant during the analysis phase, but are still useful to keep in mind during the whole development process.

Australian Government Authentication Framework

Overview

The Australian Government e-Authentication Framework (AGAF) for Business standard (AGIMO AGAF:2005) provides a set of guidelines and practices for establishing the authentication requirements for an organisation, including a systematic approach to the evaluation of all online transactions for that organisation.

AGAF utilises a risk-based system of assessing the level of assurance of identity required for each transaction and provides a means of mapping the level of assurance to a suitable authentication mechanism. Once this assessment is completed AGAF then assesses the feasibility of the authentication approach.
Motivation
AGAF provides a good contextual basis for working with the Australian government and its agencies. It contains a thorough approach and detailed documentation to aid the provision of seamless national online services. Its generic approach also provides an effective and accessible process for analysing requirements. It has a high degree of compatibility with existing Commonwealth identity management programs, and close alignment with state-based programs also using AGAF as their basis.

Usage criteria
AGAF should be used as a basis for determining the authentication requirements of the registry organisations.

ACSI 33

Overview
The Australian Government Information and Communications Technology Security Manual (also known as ACSI 33) has been developed by the Defence Signals Directorate (DSD) (http://www.dsd.gov.au) to provide policies and guidance to Australian Government agencies on how to protect their ICT systems.

Motivation
The ACSI 33 guidelines are a solid and thorough set of principles developed to scope computer systems which must work in an environment which has data security implications.

Usage criteria
Registry architecture and design should follow the recommendations made in this standard in conjunction with recommendations made by the NEHTA User Authentication Initiative.

Security techniques

Overview
The following standards apply to Information Security Management Systems:

The AS/NZS ISO/IEC 27001:2006 standard establishes guidelines and general principles for initiating, implementing, maintaining, and improving information security management in an organization. The objectives outlined provide general guidance on the commonly accepted goals of information security management.
Part B: Technical standards – Standards Map

AS/NZS ISO/IEC 17799:2006 specifies the requirements for establishing, implementing operating, monitoring, reviewing, maintaining and improving documented ISMS (Information Security Management System) within the context of the organization's overall business risks. It specifies requirements for the implementation of security controls customized to the needs of individual organizations or parts thereof.

Motivation

Healthcare organisations are moving towards higher adoption levels for information technology systems as part of a connected e-health sector. The data stored within these systems as part of patient care delivers significantly improved health outcomes compared to older paper-based systems, but it also brings the requirement to carefully protect this sensitive information, especially as the transition to a more connected e-health environment continues to progress.

These standards address the issues associated with information security management. While this is essentially outside the scope of Identity Management in particular, it does form part of the landscape into which Identity Management fits. It is expected that health organisations will have an information security management system in place prior to or as part of addressing their Identity Management requirements.

By following these standards healthcare organisations can be confident that they are following accepted and proven methodologies to protect the sensitive information they hold.

Usage criteria

Although these standards are much wider than the architecture and design of registry software systems, following these standards will have implications for the software which will need to be accounted for.

Application of this standard should initially be driven from a security risk assessment, as described in HB 231:2004.

OASIS eXtensible Access Control Markup Language (XACML) TC

Overview

The OASIS XACML (Extensible Access Control Markup Language) v2.0 open standard is an XML-based language designed to express security policies and access rights to information for Web services, digital rights management, and enterprise security applications. XACML was developed to standardise access control through XML so that, for example, a worker can access several affiliated Web sites with a single logon. XACML is sometimes referred to as Extensible Access Control Language (XACL).

XACML was designed to work in conjunction with Security Assertion Markup Language (SAML), another OASIS standard.
Motivation

The area of standardised access control in Web services is still relatively new and there is no mature solution currently available. As a maturing access control standard XACML promises the desired mix of a standard way of defining access rights along with compatibility with other OASIS standards such as SAML.

Usage criteria

Registries should use XACML to define their access policies for user and system access to registry functions and data.

OASIS Security Services (SAML) TC v2.0

Overview

The OASIS SAML (Security Assertion Markup Language) v2.0, developed by the Security Services Technical Committee of OASIS, is an XML-based framework for communicating user authentication, entitlement, and attribute information. As its name suggests, SAML allows business entities to make assertions regarding the identity, attributes, and entitlements of a subject (an entity that is often a human user) to other entities, such as a partner company or another enterprise application.

Motivation

SAML is an XML-based framework for communicating user authentication, entitlement, and attribute information from a trusted source to a relying party. As such it can be used to distribute identity information to multiple services allowing for the construction of flexible and scalable identity regimes.

Usage criteria

SAML should be used to minimise the number of times users will need to authenticate while interacting with the many different registries and infrastructure components. Each separate component and registry should be designed to accept and trust previously established authentication, entitlement, and attribute information.
Secure messaging

NEHTA has identified a number of standards pertinent to secure messaging for Australian Clinical Quality Registries. These include:
- Web services and
- XML.

Web services

Overview

The following documents describe the standards, guidelines and approaches recommended for application to application exchange:
- NEHTA 0009_2.0:2006 Web Services Standards Profile v2.0
- NEHTA 0033:2006 Technical Architecture for Implementing Services v1.0
- NEHTA 0067:2007 Guidelines for Implementing Interoperable Web Services v1.0

Web Services Standards Profile recommends the use of HTTP 1.1, SOAP 1.2, MTOM and XOP, WS-Addressing, WSDL 1.1, and WS-Security as the standards that NEHTA supports.

The Technical Architecture for Implementing Services defines a service-oriented approach to the national e-health environment.

The Guidelines for Implementing Interoperable Web Services describes how to implement Web services in an interoperable manner.

The Web Services Security standards contain many options, which can result in incompatible implementations. These guidelines suggest ways to avoid those problems. These guidelines cover how to use WSDL, SOAP, WS-Addressing, and WS-Security.

The Web Services Security specification describes enhancements to SOAP messaging that provide message integrity and confidentiality. The specified mechanisms can be used to accommodate a wide variety of security models and encryption technologies.

Motivation

The purpose of these publications is to provide guidance on the standards and approaches to use when implementing secure Web services. The Web services standards are designed to be composed together in different combinations. There are many Web services standards to choose from.
Usage criteria
Web service interfaces are required between capture systems, the national infrastructure, and with and between registry systems. These specifications are recommended for use when designing the services presented by these systems and the interfaces between them.

XML

Overview
The following are XML standards that are applicable to exchanging secure messages between systems:

- IETF RFC 3076:2001 Canonical XML Version 1.0
- IETF RFC 3275:2002 (Extensible Markup Language) XML-Signature Syntax and Processing

A logical XML (Extensible Markup Language) document can be represented in a number of different physical XML documents. They contain equivalent information, but the serialised representation is different. The Canonical XML standard defines a method to create a single canonical representation which can be used for signing and comparing documents.

The XML-Signature Syntax and Processing specifies how to digitally sign XML data. It defines the rules and process of how to create a signature, and additionally how it is to be validated. It also defines the syntax for representing digital signatures in XML.

Motivation
The purpose of these publications is to define the approach to use when digitally signing XML.

Usage criteria
Digitally signing XML is needed when XML content needs to be signed to ensure its integrity, authenticate the message, or authenticate the signing party.

The XML content must be canonicalised before it is digitally signed, as well as canonicalised before a digital signature is validated. These standards must be used when using WS-Security to sign SOAP messages.

Most messages transmitted to and from the national infrastructure and Australian Clinical Quality Registries will contain personal data and will often include clinical data. This data needs to be protected by applying these standards.
Supply chain

Overview
These documents provide the architecture for the e-procurement solution at the business and technical levels:

- NEHTA 0090:2007 E-Procurement Business Architecture v1.0
- NEHTA 0088:2007 E-Procurement Technical Architecture v1.0
- NEHTA 0131:2007 Addendum to NEHTA's E-Procurement Technical Architecture v1.0
- NEHTA 0091:2007 E-Procurement WSDL v1.0

The E-Procurement Business Architecture document specifies the organisational roles and processes in the e-procurement community. It also explains how the e-procurement solution's technical and informational perspectives are related to the organisational roles and processes.

The E-Procurement Technical Architecture document provides the technical architecture detailing the paradigm of interactions between the three roles in e-procurement: buyers, hubs and suppliers. It also explains the technical requirements in the implementation of Web Services for e-procurement.

The E-Procurement WSDL is a zip archive that provides WSDL and XSD files for use with the E-Procurement Technical Architecture v1.0. These Web services interfaces can be implemented by buyers, suppliers and e-procurement hub service providers when implementing the exchange of e-procurement business documents i.e., an e-procurement solution.

Motivation
NEHTA recommends the use of these standards to understand the e-procurement solution. This document can be used by e-procurement hub service providers, buyers and suppliers in implementing an e-procurement solution.

Usage criteria
Registries that record products (for example, device or implant registries) will ideally interact with the National Product Catalogue (NPC) to ensure effective unique product identification. These standards will guide the use of the NPC and the design of the interfaces with the NPC.
Engagement and adoption

NEHTA has identified a number of issues or standards pertinent to engagement and adoption for Australian Clinical Quality Registries. These include:

- Understanding standards and
- Corporate governance of ICT.

Understanding standards

Overview

HB 107-1998 explains the concept of standardization and assists readers of Australian Standards and other similar documents in their use and understanding of these documents.

Motivation

Standards must be properly understood to ensure effective use. Therefore, this handbook assists in the selection and use of standards.

Usage criteria

NEHTA recommends this handbook to assist with all standards implementation activities such as adoption, uptake and implementation.

Corporate governance of ICT

Overview

AS 8015-2005 provides guiding principles for Directors of organizations (including owners, board members, Directors, partners, senior executives, or similar) on the effective, efficient, and acceptable use of Information and Communication Technology (ICT) within their organization.

The standard applies to the governance of resources, computer-based or otherwise, used to provide information and communication services to an organisation. These resources could be provided by ICT specialists, within the organisation or external service providers, or by business units within the organisation.

Motivation

The guiding principles this standard provides for effective, efficient, and acceptable use of ICT within an organization can be applied to all organisations regardless of size and extent of ICT use.
Usage criteria

NEHTA encourages suppliers, developers, purchasers and implementers to assess their own governance structures and planning activities and identify the best way to implement the standards endorsed by NEHTA. NEHTA recommends the use of this particular standard to guide organisations with their reviews.

Comments

This standard was recommended for use in Supporting National E-Health Standards Implementation – Adoption, Uptake and Implementation published by NEHTA on the 02/02/2007.
References

35. Pilcher D, Ernest D, George C, Hart G, Mullany D. CUSUM analysis may have detected deteriorating hospital mortality among intensive care patients at the Bundaberg Base Hospital. Presented at the ANZICS Scientific Meeting on Intensive Care Medicine, 25–28 October 2007, Rotorua, NZ.

Australian Clinical Quality Registry checklist

Different Australian Clinical Quality Registries have different characteristics and requirements. This checklist summarises the operating principles for Australian Clinical Quality Registries. You need to determine which principles are applicable in your circumstances.

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clear and precisely defined purpose</td>
</tr>
<tr>
<td>2</td>
<td>Core data collection of essential elements</td>
</tr>
<tr>
<td>3</td>
<td>Systematic data collection at all contributing sites</td>
</tr>
<tr>
<td>4</td>
<td>Epidemiologically sound data</td>
</tr>
<tr>
<td>5</td>
<td>Outcomes properly ascertained</td>
</tr>
<tr>
<td>6</td>
<td>Burden and cost of collection considered</td>
</tr>
<tr>
<td>7</td>
<td>Complete collection from entire eligible population</td>
</tr>
</tbody>
</table>

Data collection

<table>
<thead>
<tr>
<th>Data collection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>No impact on provision of care and not a burden or cost to consumers</td>
</tr>
<tr>
<td>9</td>
<td>Data collection as close as possible to point of care</td>
</tr>
<tr>
<td>10</td>
<td>Uniformly and easily accessible from data source</td>
</tr>
<tr>
<td>11</td>
<td>Standard definitions, terminologies and specifications used</td>
</tr>
<tr>
<td>12</td>
<td>Data dictionaries used</td>
</tr>
<tr>
<td>13</td>
<td>Use existing data sources where possible</td>
</tr>
<tr>
<td>14</td>
<td>Use record linkage where possible</td>
</tr>
</tbody>
</table>

Data elements

<table>
<thead>
<tr>
<th>Data elements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Collect individually identifiable patient or subject information</td>
</tr>
<tr>
<td>16</td>
<td>Collect process of care information</td>
</tr>
<tr>
<td>17</td>
<td>Collect objective outcome information</td>
</tr>
</tbody>
</table>

Risk adjustment

<table>
<thead>
<tr>
<th>Risk adjustment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Collect objective, reliable co-variates for risk adjustment</td>
</tr>
</tbody>
</table>

Data security

<table>
<thead>
<tr>
<th>Data security</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Secure access controls and securing messaging</td>
</tr>
<tr>
<td>20</td>
<td>Data collection, storage and transmission complies with all relevant legislation and guidelines</td>
</tr>
<tr>
<td>21</td>
<td>Policies comply with Part B: Technical standards – Standards Map</td>
</tr>
</tbody>
</table>
Checklist

<table>
<thead>
<tr>
<th>Data quality</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Reports percentage of eligible patients recruited</td>
</tr>
<tr>
<td>23</td>
<td>Data quality control plan used</td>
</tr>
<tr>
<td>24</td>
<td>Data checks/audits routinely performed</td>
</tr>
<tr>
<td>25</td>
<td>Data management processes used</td>
</tr>
<tr>
<td>26</td>
<td>Reports produced to specific timetable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Governance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Formal governance structures</td>
</tr>
<tr>
<td>28</td>
<td>Quality of care policies developed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Custodianship</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Custodianship explicitly declared</td>
</tr>
<tr>
<td>30</td>
<td>Data access and reporting policies available</td>
</tr>
<tr>
<td>31</td>
<td>Third party access only via Steering Committee and IEC approval</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethics and privacy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>IEC approval gained</td>
</tr>
<tr>
<td>33</td>
<td>Personnel familiar with and abide by relevant privacy legislation, the National Statement on Ethical Conduct in Human Research and the Australian Code for the Responsible Conduct of Research.</td>
</tr>
<tr>
<td>34</td>
<td>Participants or their next of kin made aware of the collection of register data and given the option to not participate.</td>
</tr>
<tr>
<td>35</td>
<td>IEC approval sought for projects using register data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Quality of care assessed</td>
</tr>
<tr>
<td>37</td>
<td>No delay in reporting risk-adjusted outcome measures</td>
</tr>
<tr>
<td>38</td>
<td>Formal peer review process prior to publication</td>
</tr>
<tr>
<td>39</td>
<td>Local database managers can perform ad hoc analyses</td>
</tr>
<tr>
<td>40</td>
<td>Annual report publicly available</td>
</tr>
<tr>
<td>41</td>
<td>Documented procedures for reporting on quality of care, including addressing outliers or unexplained variance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resources</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Appropriate and sustainable funding for collection, quality control and reporting</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>ACSQHC</td>
<td>Australian Commission on Safety and Quality in Health Care</td>
</tr>
<tr>
<td>AGAF</td>
<td>Australian Government Authentication Framework</td>
</tr>
<tr>
<td>AIHW</td>
<td>Australian Institute of Health and Welfare</td>
</tr>
<tr>
<td>AMT</td>
<td>Australian Medicines Terminology (AMT) – a national extension of SNOMED CT for use within information systems within Australia.</td>
</tr>
<tr>
<td>ANZICS</td>
<td>Australian and New Zealand Intensive Care Society</td>
</tr>
<tr>
<td>audit</td>
<td>An examination or review that established the extent to which a condition, process or performance conforms to predetermined standards or criteria. Audits may be carried out on the provision of care, compliance, community response and completeness of records.</td>
</tr>
<tr>
<td>benchmark</td>
<td>A slang or jargon term, usually meaning a measurement taken at the outset of a series of measurements of the same variable, sometimes meaning the best or most desirable value of the variable. A standard or point of reference.</td>
</tr>
<tr>
<td>bias</td>
<td>Deviation of results or inferences from the truth, or processes leading to such deviation. Any trend in the collection, analysis, interpretation, publication or review of data that can lead to conclusions that are systematically different from the truth.</td>
</tr>
<tr>
<td>clinical governance</td>
<td>A system through which…organisations are accountable for continuously improving the quality of their services and safeguarding high standards of care by creating an environment in which excellence in clinical care will flourish.</td>
</tr>
<tr>
<td>clinical trial</td>
<td>Any research project that prospectively assigns human participants or groups to one or more health-related interventions to evaluate the effects on health outcomes. In distinguishing a clinical register from a clinical trial: – A clinical register has broad inclusion criteria. It aims to recruit all patients with the disease or condition, or undergoing the procedure. A clinical trial is usually highly selective in its approach to patient recruitment. Therefore the findings from clinical trials are usually not as generalisable as those from registers. – A clinical register is observational in nature. It observes practice in the real world without dictating the care to be given. In contrast, a clinical trial is interventional; patients are assigned to treatment or control groups.</td>
</tr>
<tr>
<td>clinician</td>
<td>A health professional whose practice is based on direct observation and treatment of a patient, as distinguished for other types of health workers, such as laboratory technicians and those employed for research.</td>
</tr>
<tr>
<td>CRE PS</td>
<td>NHMRC Centre of Research Excellence in Patient Safety, Monash University</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Guideline</td>
<td>A formal statement about a defined task or function. In the terminology developed by the European Community, directives are stronger than recommendations, which are in turn stronger than guidelines.¹</td>
</tr>
<tr>
<td>HL7</td>
<td>Health Level Seven (HL7), is an all-volunteer, not-for-profit organisation involved in development of international healthcare standards. HL7 is also used to refer to some of the specific standards created by the organisation.</td>
</tr>
<tr>
<td>HPI</td>
<td>Healthcare Provider Identifier – for both individual providers (HPI-I) and for provider organisations (HPI-O). Also see UHI.</td>
</tr>
<tr>
<td>HTTP 1.1</td>
<td>HyperText Transfer Protocol 1.1 – a communications protocol for the transfer of information on the Internet.</td>
</tr>
<tr>
<td>HTTPS</td>
<td>Hypertext Transfer Protocol over Secure Socket Layer – indicates a secure HTTP connection; a communications protocol for the transfer of information on the Internet with enhanced security compared with HTTP.</td>
</tr>
<tr>
<td>ICD10</td>
<td>International Statistical Classification of Diseases and Related Health Problems, Tenth Revision</td>
</tr>
<tr>
<td>ICD10-AM</td>
<td>International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, Australian Modification</td>
</tr>
<tr>
<td>IdM</td>
<td>Identity Management</td>
</tr>
<tr>
<td>IEC</td>
<td>Institutional Ethics Committee</td>
</tr>
<tr>
<td>iEHR</td>
<td>Individual Electronic Health Record</td>
</tr>
<tr>
<td>IHI</td>
<td>Individual Healthcare Identifier – a unique identifier for users of health care. Also see UHI.</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>MeTEOR</td>
<td>Metadata Online Registry – Australia’s repository for national data standards for health, housing and community services statistics and information.</td>
</tr>
<tr>
<td>Minimum data set</td>
<td>A widely agreed upon and generally accepted set of terms and definitions constituting as core data acquired for medical records and employed for developing statistics suitable for diverse types of analyses and users.</td>
</tr>
<tr>
<td>MTOM</td>
<td>Message Transmission Optimization Mechanism – a method of sending binary data to and from web services.</td>
</tr>
<tr>
<td>National Health Data Dictionary</td>
<td>The national metadata standards for the health sector are published in the National Health Data Dictionary by the Australian Institute of Health and Welfare.</td>
</tr>
<tr>
<td>NCRIS</td>
<td>National Collaborative Research Infrastructure Strategy</td>
</tr>
<tr>
<td>NEHTA</td>
<td>National E-Health Transition Authority</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>NMDS</td>
<td>National Minimum Data Set</td>
</tr>
<tr>
<td>NPC</td>
<td>National Product Catalogue</td>
</tr>
<tr>
<td>OASIS</td>
<td>Organization for the Advancement of Structured Information Standards (http://www.oasis-open.org/home/index.php)</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ODP</td>
<td>Open Distributed Processing</td>
</tr>
<tr>
<td>OMG</td>
<td>Object Management Group – a consortium, originally aimed at setting standards for distributed object-oriented systems, focused on modelling (programs, systems and business processes) and model-based standards.</td>
</tr>
<tr>
<td>PBS</td>
<td>Pharmaceutical Benefits Scheme</td>
</tr>
<tr>
<td>quality of care</td>
<td>A level of performance or accomplishment that characterises the health care provided. Ultimately, measures of the quality of care always depend upon value judgements, but there are ingredients and determinants of quality that can be measured objectively. These ingredients and determinants have been classified by Donabedian into measures of structure (staff, facilities), process (diagnostic and therapeutic procedures) and outcome (fatality rates, disability rates, level of patient satisfaction).¹</td>
</tr>
<tr>
<td>record linkage</td>
<td>A method of bringing together the information contained in two or more records – e.g. in different sets of medical charts, and in vital records such as death certificates – and a procedure to ensure that each individual is identified and counted only once. Record linkage makes it possible to relate significant health events that are remote from one another in time and place or to bring together records of different individuals, e.g. members of a family.¹</td>
</tr>
<tr>
<td>register</td>
<td>The file of data concerning all cases of a particular disease or other health-relevant condition in a defined population such that the cases can be related to a population base. With this information, incidence rates can be calculated. If the cases are followed up, information on remission, exacerbation, prevalence and survival can also be obtained.¹</td>
</tr>
<tr>
<td>registry</td>
<td>The system of ongoing registration for individuals entered into a register.¹</td>
</tr>
<tr>
<td>SAML</td>
<td>Security Assertion Markup Language – an XML-based standard for exchanging authentication and authorization data between security domains, i.e., between an identity provider (a producer of assertions) and a service provider (a consumer of assertions)</td>
</tr>
<tr>
<td>SNOMED-CT</td>
<td>Systematised Nomenclature of Medicine, Clinical Terms</td>
</tr>
<tr>
<td>SOAP 1.2</td>
<td>A protocol for exchanging XML-based messages over computer networks, normally using HTTP/HTTPS.</td>
</tr>
<tr>
<td>standard</td>
<td>Something that serves as a basis for comparison; a technical specification or written report drawn up by experts based on the consolidated results of scientific study, technology and experience aimed at optimum benefits and approved by a recognised and representative body.¹</td>
</tr>
<tr>
<td>TOGAF</td>
<td>The Open Group Architecture Framework – a framework for Enterprise Architecture providing a comprehensive approach to the design, planning, implementation, and governance of an enterprise information architecture.</td>
</tr>
<tr>
<td>TOGAF ADM</td>
<td>The Open Group Architecture Framework Architecture Development Method</td>
</tr>
<tr>
<td>UHI</td>
<td>Unique Healthcare Identifier, see IHI and HPI</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modelling Language – a standardised general-purpose software engineering modelling language. UML includes a set of graphical notation techniques to create abstract models of specific systems, referred to as UML model.</td>
</tr>
<tr>
<td>validity (study)</td>
<td>The degree to which the inference drawn from a study, warranted when account is taken of the study methods, the representativeness of the study sample, and the nature of the population from which it is drawn. Two varieties of study validity are distinguished: internal validity and external validity (generalisability).</td>
</tr>
<tr>
<td>validity measurement</td>
<td>An expression of the degree to which a measurement measures what it purports to measure. Several varieties are distinguished, including construct validity, content validity, and criterion validity (concurrent or predictive validity).</td>
</tr>
<tr>
<td>WSDL 1.1</td>
<td>Web Services Description Language – an XML-based language that provides a model for describing Web services.</td>
</tr>
<tr>
<td>XACL</td>
<td>Extensible Access Control Language. See also XACML</td>
</tr>
<tr>
<td>XACML</td>
<td>Extensible Access Control Markup Language – a declarative access control policy language implemented in XML and a processing model, describing how to interpret the policies.</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language – a general-purpose specification for creating custom markup languages. It is classified as an extensible language as it allows its users to define their own elements. Its primary purpose is to help information systems share structured data, particularly via the Internet.</td>
</tr>
<tr>
<td>XOP</td>
<td>XML-binary Optimized Packaging – a convention for serialisation of XML Infosets that have a mix of binary and textual data, and, more generally for storing binary data in XML tags.</td>
</tr>
</tbody>
</table>
Attachment B – Completed summative evaluation framework for the Australian Clinical Quality Registries project
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl. relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Australian Clinical Quality Registries should be developed with clear and precisely defined purposes.</td>
<td>All pilot registries provided a statement of purpose, identifying questions to be answered.</td>
<td>All pilot registries agreed with this OP. Fundamental / necessary for any registry (BiNBR, NOffRA). Most important of any OP (NBCA). Useful for stakeholder engagement and to avoid scope creep (AuSCR, NBCA) and for funding (NBCA).</td>
<td>No feasibility or cost issues were raised. AuSCR described adoption of a range of measures to improve understanding of purpose, implying judgment that this was worth the cost/time involved.</td>
<td>Scope creep was mentioned as an issue that can be controlled by having a clear purpose statement (AuSCR, NBCA).</td>
<td>This Operating Principle is supported. However, the wording of the OP should include: defined purposes aimed at improving the safety and/or quality of health care. Justification for the principle could be enhanced by mention of avoidance of scope creep. In addition, the evaluators note that there is no requirement in the OPs to justify use of a registry against alternative methods, such as clinical practice surveys or analysis of administrative data (e.g. VLADs), particularly where case numbers are large. Some registries may not be cost-effective against alternative methodologies, an issue relevant to funding and patient privacy. It is noted that comments about using or enhancing administrative data as an alternative to beginning a registry are buried in commentary about OP13. It is recommended that they be more prominently addressed under OP1.</td>
</tr>
<tr>
<td>2. For Australian Clinical Quality Registries to provide the maximum value to the health system they should focus</td>
<td>All pilot registries implemented a process that included stakeholder input to identification of core</td>
<td>All pilot registries agreed that this OP is relevant and important but NBCA questioned whether all of the</td>
<td>Some registries pointed to the challenges faced in identifying core data elements against competing interests of clinical stakeholders and in an</td>
<td>Competing stakeholder interests, including for individual research objectives were described as challenges by some, as was the diversity of data systems</td>
<td>This Operating Principle is supported with no reservations. The evaluators note that the NBCA's question about the necessity for all recommended</td>
</tr>
</tbody>
</table>
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>their core data collection on the essential elements required to serve their main purposes.</td>
<td>data elements.</td>
<td>recommended components were needed for all registries.</td>
<td>environment of diverse hospital data systems. Workshops with stakeholders (with an independent facilitator in at least one case) were used to achieve a result, with outcomes confirmed by steering committees. One registry (ACPR) recommended unchanged data sets for a minimum term (3 years) and specific process for approval.</td>
<td>used in hospitals. One pilot registry (AuSCR) commented on the need to review core data elements after field experience.</td>
<td>components to be included in core data elements relates to surgeons’ objections to addition of outcome data, which is regarded as outside the scope of the audit. In this light, the NBCA suggests that OPs should document exceptions to recommended core data components, dependent on the purpose of the registry (or audit). While the evaluators agree in principle that justified exceptions to OPs should be noted explicitly, and makes recommendations elsewhere, there is not a solid case in respect of outcome data in core data elements for clinical quality registries. The issue turns on whether an 'audit' focusing on meeting care guidelines qualifies as a full 'clinical quality registry'. In this regard, the evaluators note the statement in relation to OP 5 that 'Outcome determination is the most fundamental requirement of an Australian Clinical Quality Registry'. We noted ACPR’s suggestion to maintain data sets unchanged for a minimum period but think that circumstances might make this impracticable as a firm recommendation.</td>
</tr>
</tbody>
</table>

3. Data collected by Australian Clinical

| 3. Data collected by Australian Clinical | All pilot registries have reported on | Pilot registries either supported | Development costs are required where existing data | METeOR definitions have a broad purpose and do not | This Operating Principle is supported. The evaluators |
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl. relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Registries should be confined to items which are epidemiologically sound, i.e. simple, objective, and reproducible.</td>
<td>processes for establishing data that are simple, objective, and reproducible.</td>
<td>this OP explicitly or did not question its efficacy.</td>
<td>standards do not meet specific requirements or do not exist for a particular clinical area (BiNBR). Literature reviews were used to identify national or international standards in these cases (BiNBR, AuSCR) and most pilot registries also engaged clinical expertise to identify appropriate standards by consensus.</td>
<td>necessarily have specific clinical relevance or specificity for a particular registry (ACPR). State/Territory data systems used in contributing hospitals are not all METeOR compliant (e.g. ethnicity, identified by BiNBR, indigenous status, identified by AuSCR). AROC reported difficulties with gaining acceptance of its data dictionary as a national standard, despite widespread adoption by rehabilitation centres in Australia. Some data are subject to coder interpretation issues (BiNBR) or remain subjectively assessed (NBCA, in relation to clear margins around breast cancer).</td>
<td>noted that several pilot registries focused more on the suitability of METeOR definitions (more appropriate for OPs 11 and 12) than on the underlying criteria for ensuring epidemiologically sound data, summarised in the Summary of Operating Principles (p 14) as 'simple, objective, reproducible'. It is recommended that the text be recast to give more attention to such criteria, which could perhaps be extended to encompass validity (measuring what they purport to measure) and a rationale for the range of risk adjustment (confounding) elements. This OP could also be an appropriate location for recommending formal adoption of a case definition, not otherwise mentioned in the OPs. While reference to METeOR is appropriate, the evaluators agree with the BiNBR suggestion that mention be made of the possible need to develop data that are clinically-specific and with the AuSCR recommendation for acknowledging alternative references to standards. The evaluators are sympathetic towards the AROC argument that national registration processes have not adopted...</td>
</tr>
</tbody>
</table>
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl. relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Methods used to collect data in Australian Clinical Quality Registries should be systematic, with identical approaches used at the different institutions contributing information.</td>
<td>Most pilot registries reported issues with implementation of this OP.</td>
<td>Pilot registries either supported this OP explicitly or did not question its efficacy. However, some noted interaction with OPs 8 and 13.</td>
<td>Several pilot registries considered that full achievement of this OP was not feasible in the absence of technical standards (see issues/barriers). ACPR noted that there would be additional burden on local data collection until IT developments occurred. NBCA, working with an established audit, reported that it did not have control over hospital practices and considered that compromise was necessary. On the other hand, a new registry (AuSCR) provided detailed documentation of measures it had implemented to deal with factors working against achievement of this OP. These would have incurred some costs.</td>
<td>A number of issues and barriers were documented by pilot registries, starting with the lack of uniformity in IT systems. Other identified issues were diversity of data collection systems and data elements (NBCA), the level of clinical knowledge of staff involved in data collection (ACPR), the need to collect clinical-specific data that are not captured by administrative data system and reliance on non-standard clinical notes (BiNBR), limitations in general of manual data collection (AROC).</td>
<td>the AROC data set as a standard, considering its almost universal adoption by rehabilitation centres in Australia.</td>
</tr>
<tr>
<td>5. Outcome determination should be undertaken at a time when the clinical condition has stabilised and the outcome can therefore be reasonably ascertained.</td>
<td>All pilot registries reported the chosen outcome measures.</td>
<td>Pilot registries generally support this OP while not necessarily being able to fully implement during the time frame of the evaluation.</td>
<td>AuSCR is testing the reliability and cost-efficiency of alternative methods of follow-up to assess outcomes after discharge from hospital. However, it has not been able to report during the time frame of the evaluation.</td>
<td>NBCA reports that patient outcomes are problematic for surgeon assessment and are not considered essential for audit.</td>
<td>This Operating Principle is supported. Although timeframes constrained newer registries from completing their evaluation, none raised any objection to the OP.</td>
</tr>
</tbody>
</table>
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. In determining the time to outcome assessment, Australian Clinical Quality Registries must consider the burden and cost of data collection together with the likelihood of loss to follow-up.</td>
<td>All registries reported their method of follow-up for outcome assessment.</td>
<td>As for OP5</td>
<td>BiNBR noted that collecting outcome data is costly and requires additional resources. NOffRA has opted for telephone follow-up as the most cost-effective. NBCA considers the cost of collecting patient outcome data to be too high. See also notes under OP5.</td>
<td>There were no major issues or barriers other than a general concern about costs and the need to find the most cost-effective method.</td>
<td>This Operating Principle is supported with the note that evaluation is incomplete in respect of several pilot registries. The results of some testing, when available, may enable clearer guidelines to be developed in the future.</td>
</tr>
<tr>
<td>7. Australian Clinical Quality Registries must ensure that complete registry data are collected from the eligible population.</td>
<td>All pilot registries reported their approaches to ensuring and/or assessing population coverage</td>
<td>All pilot registries support this OP.</td>
<td>NBCA reports that achievement is not feasible for a voluntary audit. Opt-off consent arrangements improve cost-effectiveness. Some registries plan data linkage with hospital records as a cost-effective means of verifying population coverage.</td>
<td>AuSCR reports a problem of missing stroke patients from hospitals (one in particular) reporting only stroke unit admissions and not general ward stroke patients. Opt-in consent was a barrier for NOffRA, anticipated at the start of the project and confirmed by loss of patients during the evaluation. BiNBR recommends splitting the OP into two, covering case capture and completeness of data separately. NBCA recommends greater clarity in describing the population base from which complete coverage is required.</td>
<td>This Operating Principle is supported. The evaluators consider that it should not be necessary to create the additional OP proposed by BiNBR for completeness of data, as this can be covered adequately and more appropriately by OPs that focus on data quality. In this light it is recommended that it be made clearer that the focus of this OP is on case ascertainment, perhaps with the additional clarification requested by NBCA.</td>
</tr>
</tbody>
</table>
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. The collection of data for an Australian Clinical Quality Registry must not impact on the provision of health care and should not be a burden or incur a cost to consumers.</td>
<td>All pilot registries reported measures employed to minimise the burden of data collection on providers and patients.</td>
<td>Pilot registries support this OP whilst noting that 'no' impact is somewhat idealistic.</td>
<td>Some pilot registries emphasise the importance of training and support to data collectors. ACPR reports that the collection burden falls to junior doctors and registrars in most cases, but should be regarded as routine activity. It sees the need for a national registry to have State-based project officers to oversee and train staff for data roles. BiNBR mentions the time-consuming nature of data retrieval from non-standard patient notes (for subject-specific data). NOfRRA suggests that sample follow-up may be sufficient for assessing patient outcome. AuSCAR suggests development of a collective IT solution to automate extraction of administrative data elements for clinical quality registries.</td>
<td>Barriers to achievement of no (or at least minimal) impact on care will be greater while automated data collection is not supported by IT systems.</td>
<td>The evaluators agree with views that the OP is idealistic and would be better restated as needing to maintain an appropriate balance of the time and cost of data collection against impact on patient care, particularly where clinicians are directly involved in data collection.</td>
</tr>
<tr>
<td>9. Data capture should be performed as close as possible to the time and place of care by appropriately trained data collectors.</td>
<td>Most pilot registries were unable to complete testing</td>
<td>The principle is considered sensible and is supported.</td>
<td>Most registries have approached this by disseminating guidelines and timetables for submission of data.</td>
<td>Achievement relies on the circumstances at individual contributing sites. Some data are not immediately available, such as pathology reports (NBCA) and ICD coding (ACPR, AuSCR)</td>
<td>The Operating Principle is supported.</td>
</tr>
</tbody>
</table>
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Data should be uniformly and easily accessible from the primary data source.</td>
<td>Pilot registries reported on means of accessing data.</td>
<td>One patient registry (BiNBR) considers that this principle is adequately covered by OPs 4 and 8.</td>
<td>AuSCR studied local data forms and systems during the process of development of its minimum data set, to ensure feasibility of collection of each data element.</td>
<td>Availability of records is site-dependent and not uniform (BiNBR) and relies on patient medical records that are not automated (AuSCR). NBCA reports an issue with changes to pathology reports that will impact on accessibility of some audit data elements. NOFFRA reports that not all data are easily accessible and has a particular difficulty with availability of data on pressure ulcers.</td>
<td>The Operating Principle is supported. Evaluators consider that it adds a useful dimension not covered by other OPs, contrary to the suggestion by BiNBR.</td>
</tr>
<tr>
<td>11. Standard definitions, terminology and specifications should be used in Australian Clinical Quality Registries wherever possible to enable meaningful comparisons to be made and to allow maximum benefit to be gained from linkage to other registers and other databases (if approved by relevant ethics committees, etc.).</td>
<td>All pilot registries reported on their adoption of standard definitions.</td>
<td>Pilot registries support this OP. NBCA qualified its support by indicating that terminology used in the breast cancer community would take priority.</td>
<td>Most pilot registries adopted relevant METeOR standards but sought topic-specific standards for elements not documented in METeOR. ACPR drew on 'craft group' expertise and its Management Committee, BiNBR used other standards including ICECI, and AuSCR drew on a range of standards from overseas registries and from the National Stroke Foundation. Several pilot registries reported that staff had received METeOR training.</td>
<td>Lack of national standards for topic specific data elements required wider search for standards, but with apparently good results. BiNBR expressed some dissatisfaction with slowness of the METeOR system, the less than comprehensive training delivered and a lack of post-training support. BiNBR reported that METeOR standards are not necessarily used by contributing hospitals, making its adoption problematic. In relation to SNOMED-CT, BiNBR had limited expertise to explore its potential and AROC considered that its semantic interoperability with the AROC data set needs to be examined separately. AuSCR reports that SNOMED-CT has been used.</td>
<td>This Operating Principle is supported. Most pilot registries have used METeOR wherever possible and adopted appropriate processes for adding specialist data elements not in METeOR. There is less evidence at this stage to make a firm recommendation about SNOMED-CT, with some indications that it may require specific development in registry-related fields. Also not evident is whether pilot registries will put forward their METeOR formatted data set specifications for adoption as National Minimum Data Sets or for lodgment in METeOR as Data Set Specifications, or whether METeOR administrative requirements might make their acceptance problematic. It is therefore</td>
</tr>
</tbody>
</table>

grosvenor management consulting
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Australian Clinical Quality Registries must use data dictionaries when they are established to ensure that a systematic and identical approach is taken to data collection and data entry. They need to publish eligibility criteria, metadata, data dictionaries, etc.</td>
<td>All pilot registries have produced a data dictionary, but some have not completed their evaluation of this OP</td>
<td>All pilot registries regard this OP as essential for a clinical quality registry.</td>
<td>No issues related to feasibility or cost-effectiveness of implementing data dictionaries in general were raised, but some comments reflected on the cost-effectiveness of documenting according to METeOR requirements</td>
<td>BiNBR found the METeOR format too cumbersome for users and developed a separate data dictionary for their use, as did ACPR which reported shortcomings in its usability. NBCA's data dictionary is originally based on the NHDD.</td>
<td>This Operating Principle is supported. Evaluators recommend that the OPs note that registries may need to consider dissemination of data dictionaries in a more user-friendly format than METeOR for their main registry users.</td>
</tr>
<tr>
<td>13. To avoid duplicating data capture, Australian Clinical Quality Registries use data from existing data sources, including administrative data, where they are of a satisfactory quality</td>
<td>All pilot registries reported on their assessment of existing data as a registry source but evaluations are incomplete.</td>
<td>All pilot registries support this OP in principle.</td>
<td>ACPR is investigating custom solutions for contributing sites, where quality of existing data is judged to be satisfactory. This may be costly, however. AuSCR reports quotes for such solutions in the range $17K to $25K per site. It has implemented simpler and more cost-effective methods of data transfer using Excel. NOfFRA intends to rely largely on administrative data from hospital inpatient systems if its pilot registry expands to</td>
<td>ACPR notes that access to the time of IT specialists at contributing institutions is limiting its capacity to investigate automatic means of transferring existing data. BiNBR and NBCA both report that their lack of a personal identifier is a constraint against accessing existing data sources. BiNBR adds that relevant data in routine data collections is limited, has not been validated and is often not compliant with standards. AROC has found similar problems in general.</td>
<td>This Operating Principle is supported, although it is worth noting that full implementation depends on IT capacity at contributing sites as well as registries, and may take some time to achieve. This was acknowledged by NEHTA staff attending the project workshop in October 2009.</td>
</tr>
</tbody>
</table>
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>national coverage. NBCA has developed software that would enable audit staff to import existing data from administrative systems at individual hospitals.</td>
<td>but statewide patient data systems have been augmented in NSW and Queensland to incorporate the AROC data set.</td>
<td>This Operating Principle is supported. Most pilot registries see individual identifiers as a necessary requirement but NBCA’s experience should be noted. Opportunities for linkage should improve with implementation of the Individual Healthcare Identifier, expected in 2010. However, at time of writing, clarification is being sought that the proposed legislation will allow disclosure of IHIs by registries seeking to use them in linkage with other data sources.</td>
</tr>
<tr>
<td>14. Australian Clinical Quality Registries should have the capacity to enhance their value through linkage to other disease and procedure registers or other databases.</td>
<td>All pilot registries have commented on the potential for data linkage from their registry but only NBCA has tested its feasibility (in 2008).</td>
<td>All pilot registries comment favourably on potential for future data linkage. Purposes envisaged include verification of registry data quality against alternative data and ascertainment of long term outcomes, especially death using the NDI.</td>
<td>Pilot registries in general see data linkage as feasible, some (including AROC) looking forward to enhanced opportunities expected to emerge from implementation of Individual Healthcare Identifiers under pending legislation. BiNBR considers that linkage would not be feasible until it has ethics approval to hold identifiable data. However, NBCA reports on successful linkage of its de-identified data with the NDI in 2008, yielding data with a level of accuracy deemed sufficient for epidemiological purposes. NOffRA sees value in linkage with the AOA National Joint Replacement Registry.</td>
<td>BiNBR sees ethics approval for holding identified data as a barrier to data linkage.</td>
<td></td>
</tr>
</tbody>
</table>
Data Elements

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Australian Clinical Quality Registries should collect individually identifiable patient or subject information.</td>
<td>Three of the pilot registries collect individually identifiable patient data and three do not.</td>
<td>Some pilot registries regard collection of identified patient data as essential, others see advantages for certain purposes. Two of those not currently collecting identified data have at least tentative plans to do so in the future.</td>
<td>Pilot registries generally agree that collection of identifiable patient data enables or facilitates registry management processes and the conduct additional analysis, e.g. of patient outcomes. Use of a national Individual Healthcare Identifier (IHI), when available, would make this process more cost-effective for registries. As an interim measure, AuSCR is creating its own unique patient identifier but its database has provision to include the IHI.</td>
<td>Ethics approval processes became a barrier for BiNBR and is noted by NBCA as an issue to be faced in future.</td>
<td>The evaluators note that in the documentation of OP15, the statement that CQRs may need individually identifiable patient data for certain reasons (p33) becomes ACQRs should collect individually identifiable patient or subject information (p35), without further argument. Given that some or the pilot registries (and others external to this evaluation) are meeting their declared purpose without collecting identified data, it is recommended that the OP be restated to reflect the case built on page 33. Revised wording might be 'Collect sufficient patient-identifying information to support the registry's stated purpose. Most clinical quality registries would require individually identifiable data, for which use of national IHIs is recommended'. This would also be consistent with the supporting text for OP2, which is related. The existing list of reasons for collecting identifiable data could also mention identification of duplicate patient records. General note: The set of OPs that relate to Data Elements...</td>
</tr>
</tbody>
</table>
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principle</th>
<th>Support</th>
<th>Feasibility or Cost Issues</th>
<th>Evidence Base</th>
<th>Notes</th>
</tr>
</thead>
</table>

16. Where patterns or processes of care have an established link to outcomes and process measures are simple, reliable and reproducible, they should be considered for collection by Australian Clinical Quality Registries.

- **All pilot registries are collecting process of care information.**
- **Supported by all pilot registries.**
- **No feasibility or cost issues were raised.**
- **BiNBR points out the need for an evidence base to support selection of process indicators that are related to outcomes.**
- This Operating Principle is supported with no reservations.

17. Where possible, outcomes should be assessed using objective measures. Where this is not possible, outcome should be assessed by an independent person and undertaken using standardised and validated tools.

- **All but one pilot registry (NBCA) collect outcome data but evaluation remains incomplete.**
- **Supported by all but one pilot registry. NBCA provides qualified support.**
- **Objective outcome measures are not always available.**
- **NBCA reports that patient outcomes are problematic for surgeon assessment and are not considered essential for audit.**
- This Operating Principle is supported with no reservations.
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Risk adjustment</th>
<th>All but one pilot registry (NBCA) collect outcome data but evaluation remains incomplete.</th>
<th>Supported by all but one pilot registry. NBCA offers qualified support as it has yet to consider risk adjustment.</th>
<th>Most pilot registries have found this OP feasible. Some are using models that require development and/or validation in Australian environments.</th>
<th>NBCA indicates that the OPs document provides little guidance about minimum requirements for effective risk adjustment.</th>
<th>This Operating Principle is supported with no reservations.</th>
</tr>
</thead>
</table>

18. Australian Clinical Quality Registries should collect objective, reliable co-variates for risk adjustment to enable factors outside the control of clinicians to be taken into account by using appropriate statistical adjustments.
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data security</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. To protect register data, Australian Clinical Quality Registries must utilise secure access controls and secure electronic transfer and electronic messaging systems.</td>
<td>All pilot registries have described their access controls and electronic data transfer arrangements, not necessarily aligned against explicit NEHTA-recommended standards. Few of the recommended Technical Standards have been fully evaluated, even by those pilot registries that have been able to put more effort into investigating and understanding the place of the recommended standards.</td>
<td>Supported by all pilot registries. ACPR has submitted a comprehensive report that is generally supportive of NEHTA-recommended standards, but with some exceptions for which it recommends alternatives. BiNBR did not agree with the need for specifications to be as explicit as set out in Technical Standards. AROC refers to 'university standards' and pending upgrades to 'state of the art standards, without being explicit</td>
<td>The effort required to explore content of the standards and consider their efficacy and feasibility was generally reported to be high. BiNBR reported that it was able to implement SSL protocols and with data encryption and audit logging without significant cost. AuSCR commented on the time cost involved in communication with its external vendor and with verifying its compliance with standards. In relation to identity management, ACPR expressed doubts about the current feasibility of XACML and federated login systems in general.</td>
<td>ACPR commented on the current impracticality of HL7 messaging, because of institutional capabilities and a variety of HL7 versions that would need to be accommodated. ACPR also argued for security techniques presented in ISO27001 and ISO27002 to be used in place of those in ASCI 33. Implied throughout the ACPR report is a concern that registry managers have insufficient knowledge of the specific requirements of security techniques.</td>
<td>This Operating Principle is supported. The evaluators note different points of view expressed by pilot registries might be taken into a review of the explicit standards proposed, focusing on feasibility of individual standards for adoption in the current healthcare environment and on the suitability of alternatives that some pilot registries are using. These conclusions also lean towards content and layout changes that would: (1) include more informative references to relevant technical standards, generic or specific, required or recommended for compliance with each operating principle (rather than a less precise and less informative message, 'see Part B: Technical Standards') and (2) take Technical Standards into a separate reference document (perhaps web-based) where relatively more frequent updates on recommended standards and guidance on acceptable alternative standards could be maintained.</td>
</tr>
</tbody>
</table>
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. The collection, storage and transmission of clinical registry data must be in line with relevant legislation and guidelines.</td>
<td>All pilot registries have considered relevant legislation and guidelines.</td>
<td>Supported by all pilot registries.</td>
<td>Pilot registries did not raise feasibility or cost-effectiveness issues in relation to legislation or guidelines</td>
<td>Pilot registries did not raise any issues or barriers in relation to legislation or specific guidelines described in supporting text for the OP.</td>
<td>This Operating Principle is supported with no reservations.</td>
</tr>
<tr>
<td>21. Institutional policy principles set out in Part B: Technical standards should be met.</td>
<td>All pilot registries described or commented on their policies.</td>
<td>Supported by all pilot registries.</td>
<td>No feasibility or cost-effectiveness issues were explicit.</td>
<td>BiNBR and NBCA commented on a need for this OP to make explicit which Technical Standards are relevant.</td>
<td>This Operating Principle is supported with no reservations.</td>
</tr>
</tbody>
</table>

Data quality

| 22. Australian Clinical Quality Registries should report as a quality measure the percentage of eligible patients recruited to the registry. | Pilot registries reported on their means of assessing levels of ascertainment but in general evaluation is incomplete. | Pilot registries generally supported this OP. | Most plans included cross-checks with other data sources. | The availability of suitable external source data may be an issue. NBCA indicated that it cannot obtain precise denominator data for early breast cancer. | This Operating Principle is supported with no reservations. |
| 23. Australian Clinical Quality Registries should have a robust quality control plan which allows ongoing monitoring of the completeness and accuracy of the data collected. | All registries reported on their approach to implementation of a quality assurance plan but evaluation is incomplete. | Pilot registries support this OP. | AuSCR will evaluate the proportion of records that need to be audited | ACPR and BiNBR both indicated that implementation of quality control is site-dependent. | This Operating Principle is supported. NBCA points out that terms 'quality assurance' and 'quality control' are used interchangeably in the OP document. The evaluators agree with NBCA that 'quality assurance' is a more appropriate term for describing a plan and recommends this change to the OP. |
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>24. Australian Clinical Quality Registry data should be checked in a sample of cases. This usually involves audit against source records. The sample size needs to be sufficient to produce reliable measures of data completeness and accuracy. The frequency of audits needs to be sufficient for data quality lapses to be identified promptly. Incomplete or inaccurate data should be identified by the data centre and remedied as soon as possible.</td>
<td>This OP remains relatively untested by pilot registries.</td>
<td>Pilot registries generally supported this OP. NOffRA questions the need if rigorous quality control processes are implemented.</td>
<td>BiNBR regards quality audits as costly but worthwhile. NBCA indicates that its OP is not feasible from a resource perspective.</td>
<td>AROC indicates a resource barrier to routine quality audits. Others generally acknowledged cost as a barrier.</td>
<td>This Operating Principle is sound but remains untested and raises resource issues that not all pilot registries could overcome. The evaluators recommend that it be retained but that resource constraints are acknowledged in the OP document.</td>
</tr>
<tr>
<td>25. Australian Clinical Quality Registries should incorporate in-built data management processes such as data range and validity checks.</td>
<td>All pilot registries described relevant data management processes</td>
<td>All pilot registries support this OP.</td>
<td>No feasibility issues were raised by pilot registries, who regard this OP as essential.</td>
<td>No issues/barriers were identified</td>
<td>This Operating Principle is supported with no reservations.</td>
</tr>
<tr>
<td>26. Australian Clinical Quality Registry reports should be produced according to a strict timeline and should be appropriately funded to enable this to occur.</td>
<td>Newer pilot registries had not tested this OP.</td>
<td>Pilot registries support this OP.</td>
<td>Generally no feasibility issues were raised by pilot registries. AuSCR is offering online reporting from its database. NBCA is unable to guarantee timeliness of reporting.</td>
<td>The short timeframe for the evaluation meant that pilot registries generally had not reached reporting stages.</td>
<td>This Operating Principle is supported with no reservations.</td>
</tr>
</tbody>
</table>
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl. relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governance</td>
<td>All but one pilot registry reported on the governance structures set up and operational for the pilot phase of the project. A number were based on existing committees e.g. AROC. Representation by clinical craft groups, and in some pilots consumers, were considered important to ensure clinical buy-in. Not all aspects of OP 27 were tested in the timeframes for the project.</td>
<td>All pilot registries support this OP to ensure accountability and transparency, especially where it contains personal identifying information</td>
<td>No feasibility issues raised by pilot registries, although AuSCR previously noted the governance requirements for stroke were necessarily large but could be burdensome to manage.</td>
<td>While the OP is fully supported as necessary for a clinical quality registry, a number of pilots chose not to establish and thereby test this OP fully due to time constraints for the pilot projects. Issues were raised by AuSCR about the challenge of adequate representation of stakeholders while maintaining workable committees. Gaining jurisdictional representation was seen as problematic by some, e.g. BiNBR. Others intend to ensure complete representation beyond the pilot stage, NoFFRA.</td>
<td>This Operating Principle is supported with no reservations.</td>
</tr>
</tbody>
</table>
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

Operating Principles

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>28. Australian Clinical Quality Registries must establish policies to manage a range of contingencies arising from the analysis of data from the registry, which includes a formal plan ratified by the Steering Committee to address outliers or unexplained variance, to ensure that quality of care issues are effectively addressed and escalated appropriately.</td>
<td>Not all pilot registries tested this OP, e.g. NoffRA, others noted limited testing because of lack of single governing jurisdictions, e.g. BiNBR</td>
<td>Pilot registries support this OP while noting concern of clinicians in some registries about how escalation protocols are managed, e.g. BiNBR, NBCA. AROC considers this OP only partially relevant at facility level not episodic level</td>
<td>BiNBR suggested escalation policies at jurisdictional levels will need to be developed within the jurisdictional levels; NoffRA intends to report the data once established as a national registry</td>
<td>Time constraints and lack of access to pre-existing policy documents were stated as the main barriers to testing this OP (AuSCR) AROC does not see this as a responsibility due to facility level data collection. AROC recommended OP be re-worded to be more general to take account of differing purposes and operational structures. NCBA recommends that the OP be made more specific about what constitutes good quality of care, i.e. the statement on outlier policy not seen as sufficient advice.</td>
<td>This Operating Principle is supported. Evaluators note that pilot registries collecting de-identified patient data see ‘outliers’ being identified at a health service level, rather than individual patient level.</td>
</tr>
</tbody>
</table>

Custodianship

<table>
<thead>
<tr>
<th>Custodianship</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>29. Custodianship of clinical register data needs to be made explicit in Contracts and/or Funding Agreements.</td>
<td>Not all pilot registries tested this OP, e.g. BiNBR, NBCA others noted limited testing because being in the pilot phase, e.g. NoffRA</td>
<td>Pilot registries considered they were compliant with this OP i.e. considered relevant</td>
<td>Pilot registries considered they were compliant with this OP i.e. therefore feasible, but cost-effectives was not commented upon</td>
<td>Time constraints were stated as the main barriers to testing this OP in the pilot phase</td>
<td>The Operating Principle is supported. Evaluators agree with ACPR recommends that data ownership and custodianship should be publically available on registry websites.</td>
</tr>
</tbody>
</table>

30. Data access and reporting policies for Australian Clinical Quality Registries should be made available to persons wishing to use register data. | Not all pilot registries tested this OP, e.g. BiNBR others noted limited testing because being in the pilot phase, e.g. NoffRA | Pilot registries considered they were compliant with this OP i.e. considered relevant | Pilot registries considered they were compliant with this OP i.e. therefore feasible, but cost-effectives was not commented upon | Time constraints were stated as the main barriers to testing this OP in the pilot phase | This Operating Principle is supported. The note added in relation to OP 29 above is also relevant here. |
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>31. Third parties wishing to access data and publish findings must seek approval from the Steering Committee and obtain relevant Institutional Ethics Committee endorsement where identified or re-identifiable data or contact with patients is sought.</td>
<td>Not all pilot registries tested this OP, e.g. B1NBR others noted limited testing because being in the pilot phase, e.g. NoffRA</td>
<td>Pilot registries considered they were compliant with this OP i.e. considered relevant.</td>
<td>NoffRA does not support release of patient contact details to third parties or contacting patients for third parties for research purposes.</td>
<td>Time constraints were stated as the main barriers to testing this OP in the pilot phase</td>
<td>The Operating Principle is supported. Evaluators note that the policies of some (perhaps most) registries will not allow third party access to the identity of registry subjects and/or to identified registry data (e.g. NOffRA) and recommend that this be acknowledged against this OP. Evaluators agree with ACPR recommendations that guidelines for third party access should be made publically available on registry websites.</td>
</tr>
</tbody>
</table>

Ethics and privacy

With the exception of instances where data collection has been mandated through legislation or enabled through regulation or legislation:

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>32. Institutional Ethics Committee (IEC) approval must be obtained to establish the Australian Clinical Quality Registry.</td>
<td>All pilot registries tested this OP; NBCA considers not relevant to the audit</td>
<td>Except for NBCA, OP for ethics approval considered very relevant for clinical quality registries - opt out consent favoured; but approved waiver recommended by ACPR except where patient follow up is required</td>
<td>All pilot registries found the approval processes problematic to some degree, although the cost implications were not necessarily assessed</td>
<td>Institutional ethics committees were seen as a major barrier to gaining opt out consent for the pilot registries. Clinician groups concerned about clinician identifiable information e.g. ACPR. NoffRA decided to seek opt in consent to speed the approval process, but now supports opt out approval as a standard</td>
<td>This Operating Principle is supported with no reservations.</td>
</tr>
<tr>
<td>Operating Principles</td>
<td>Testing by pilot registries</td>
<td>Efficacy (incl relevance)</td>
<td>Feasibility & cost effectiveness</td>
<td>Issues/barriers</td>
<td>Conclusions and recommendations</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>33. Registry personnel should be familiar with and abide by the requirements set out in relevant privacy legislation, the National Statement on Ethical Conduct in Human Research and the Australian Code for the Responsible Conduct of Research.</td>
<td>All pilot registries tested this OP</td>
<td>Relevant to pilot registries</td>
<td>Feasible and cost effective to comply</td>
<td>No issues or barriers noted</td>
<td>The Operating Principle is supported with no reservations.</td>
</tr>
<tr>
<td>34. Participants or their next of kin should be made aware of the collection of register data. They should be provided with information about the Australian Clinical Quality Registry, the purpose to which their data will be put and provided with the option to not participate. This should be at no cost to the registry participant.</td>
<td>All pilot registries tested this OP</td>
<td>Considered relevant to provide participants opt out consent; but approved waiver recommended by ACPR except where patient follow up is required; AROC does not consider OP is relevant</td>
<td>ACPR suggested approved IEC waiver fundamentally changes this OP due to facility level data collection</td>
<td>No issues or barriers noted</td>
<td>The Operating Principle is supported. Evaluators suggest that a note be added about the possibility that an IEC may issue a waiver of consent, as described by ACPR.</td>
</tr>
<tr>
<td>35. Where projects are undertaken using register data, IEC approval must be sought unless the project falls within the scope of an institution’s</td>
<td>Not all pilot registries tested this OP; AuSCR partially tested</td>
<td>NBCA does not see this as relevant due to the Qualified Privelege (QP) status of NCBA data</td>
<td>NBCA does not see this as applicable due to the Qualified Privelege status of NCBA data</td>
<td>NBCA does not see this as applicable due to the QP status of NCBA data</td>
<td>This Operating Principle is sound but remained largely untested by the evaluation. Evaluators note that the exception mentioned by NBCA, for registries operating under QP legislation, is already...</td>
</tr>
</tbody>
</table>
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality assurance activity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>acknowledged in the note above the group of OPs dealing with ethics and privacy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36. Data from Australian Clinical Quality Registries should be used to evaluate quality of care by identifying gaps in best practice and benchmarking performance.</td>
<td>Only established pilot registries (AROC and NBCA) have tested this OP.</td>
<td>All pilot registries support this OP.</td>
<td>No feasibility or cost issues were raised. This OP is fundamental for a clinical quality registry.</td>
<td>No issues/barriers were identified</td>
<td>This Operating Principle is supported with no reservations.</td>
</tr>
<tr>
<td>37. Australian Clinical Quality Registries must report without delay on risk-adjusted outcome analyses to institutions and clinicians.</td>
<td>Only established pilot registries (AROC and NBCA) have tested this OP.</td>
<td>Pilot registries generally support this OP. NBCA offers qualified support for some aspects.</td>
<td>Pilot registries that have not reported were generally able to outline detailed reporting plans.</td>
<td>NBCA reports that patient outcomes are problematic for surgeon assessment and are not considered essential for audit.</td>
<td>This Operating Principle is sound but was generally untested during the evaluation.</td>
</tr>
<tr>
<td>38. Australian Clinical Quality Registries should verify data collected using a formalised peer review process prior to publishing findings.</td>
<td>This OP remains relatively untested by pilot registries.</td>
<td>Two existing pilot registries (AROC and NBCA) questioned the relevance of formal peer review as their benchmarking format is specific to contributing units.</td>
<td>Pilot registries were generally able to outline plans or confirm intentions to develop them.</td>
<td>No issues/barriers were identified</td>
<td>This Operating Principle is sound but was generally untested during the evaluation.</td>
</tr>
</tbody>
</table>
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>39. Local clinical register database managers should have the capacity to undertake ad hoc analyses of their data to enable monitoring of clinical care.</td>
<td>Only two pilot registries (AuSCR and NBCA) have tested this OP and both plan to extend analysis opportunities beyond those tested.</td>
<td>All pilot registries support this OP.</td>
<td>All pilot registries plan to offer this service. Providing ad-hoc analysis tools for access by contributing units incurs greater initial cost than having registry staff provide ad-hoc analyses on demand (AuSCR).</td>
<td>No issues/barriers were identified.</td>
<td>This Operating Principle is supported. The term 'local clinical register database managers' appears to have been mis-interpreted by some pilot registries. Evaluators suggest replacing it by 'clinicians and/or staff at contributing units'.</td>
</tr>
<tr>
<td>40. Australian Clinical Quality Registries must produce a publicly-accessible aggregated annual report detailing clinical and corporate findings.</td>
<td>Only two pilot registries (AuSCR and NBCA) have tested this OP.</td>
<td>All pilot registries agree with this OP, at least in principle.</td>
<td>Pilot registries described their plans or intentions to comply with this OP. ACPR plans a public report and a report to clinicians.</td>
<td>NBCA reports that loss of specific funding has interrupted summary reporting from the audit.</td>
<td>This Operating Principle is supported with no reservations.</td>
</tr>
<tr>
<td>41. Australian Clinical Quality Registries must have documented procedures for reporting on quality of care, including addressing outliers or unexplained variance.</td>
<td>This OP remains relatively untested by pilot registries.</td>
<td>All pilot registries plan to comply with this OP.</td>
<td>AuSCR has complied through a suite of policies spanning a range of registry management matters.</td>
<td>No issues/barriers were identified.</td>
<td>This Operating Principle is supported with no reservations.</td>
</tr>
</tbody>
</table>

Resources
Operating Principles for Australian Clinical Quality Registries - Final Summative Evaluation Framework

<table>
<thead>
<tr>
<th>Operating Principles</th>
<th>Testing by pilot registries</th>
<th>Efficacy (incl relevance)</th>
<th>Feasibility & cost effectiveness</th>
<th>Issues/barriers</th>
<th>Conclusions and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>42. Australian Clinical Quality Registries should be appropriately funded to allow data collection, reporting and the institution of strong quality control procedures.</td>
<td>All pilot registries tested or commented on this OP; ACPR has commissioned a consultant to review funding options for clinical quality registries; outcomes of the ACPR study should inform recommendations on this OP.</td>
<td>All pilot registries support this OP, which is considered highly relevant to the ongoing role and future of clinical quality registries.</td>
<td>Current funding approaches not considered feasible to fulfill this OP. Some registries reported ongoing funding arrangements (AROC, NBCA), one has continuation funding for the time being (AuSCR), and another has continuation funding for central registry management but not for data collection at contributing sites (ACPR).</td>
<td>All pilot registries considered lack of existing on-going and sustainable funding is a major barrier to establishing and maintaining a clinical quality registry. Achievement of sustainable funding is not entirely under the control of registry management but depends on successful business cases to funders. ACPR points out that its reduced ongoing funding may put at risk the continued participation of some contributing sites.</td>
<td>This Operating Principle is supported. However to be useful it needs to be supported by sound advice about how sustainable funding might be achieved. In this regard, the evaluators recommend that, firstly, this OP should encompass a signal to (potential) registry managers, funders and other stakeholders that compliance with the Operating Principles overall should underpin any business case for funding an Australian Clinical Quality Registry. Secondly, in anticipation of a sound funding model emerging from ACPR's investigations, OP42 should refer registries to this model for expert guidance in building a business case.</td>
</tr>
</tbody>
</table>