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Summary 
Measuring and reporting mortality in hospital patients aims to develop national indicators of in-
hospital mortality and is one of several projects conducted for the National Indicators Project 
commissioned by the Australian Commission on Safety and Quality in Health Care. The 
project has two parts: a literature review focusing on methods for analysing and reporting 
in-hospital mortality, and a modelling project aimed at establishing national indicators of in-
hospital mortality that can be implemented now, and in the future.  

Literature review 
Papers on in-hospital mortality have been appearing in the scholarly literature since the 
middle of the 19th century. A large and growing body of modern literature describes the 
methods used to measure in-hospital mortality to allow comparison of mortality levels 
between different hospitals. Valid comparisons require methods that adjust for the differing 
risks of patient mortality that arise from hospitals having patients with different mixes of 
illnesses.  

There is an emerging international consensus on which measure to use (the  
risk-adjusted Hospital Standardised Mortality Ratio, HSMR), on patient characteristics (such 
as age and diagnosis) to be included in risk-adjustment models, on modelling methods, and 
on types of cases to exclude (e.g. palliative care cases). Routinely collected data from good 
quality systems appear to provide an adequate basis for measuring in-hospital mortality, 
though discussion continues about data quality. Risk-adjusted in-hospital mortality rates— 
calculated using routinely collected data—are now reported regularly and publicly in several 
countries or jurisdictions within countries (United Kingdom, The Netherlands, Canada, and 
Queensland, Australia).  

Three main methods are used for presenting comparative in-hospital mortality data: tables, 
caterpillar plots and funnel plots. For individual hospitals, the methods generally feature the 
ratio between the actual or observed mortality rates and the expected rates calculated from 
the models. Because there is some random variation in mortality rates, and expected rates 
fall within a range, the confidence intervals for the expected rates are usually also presented.  

Longitudinal analysis of in-hospital mortality is an emerging and powerful new theme in the 
literature. 

Measuring in-hospital mortality in Australia 
The routinely collected data from the Australian National Hospital Morbidity Database were 
analysed. We applied a method used in Canada, England and the Netherlands, and referred 
to in this report as the risk-adjusted Canadian referred mortality (RACM) model. Logistic 
regression modelling of in-hospital mortality was used to calculate expected mortality: 
adjusting risk according to principal diagnosis, age, sex, comorbidity, length of stay, 
emergency or elective admission status and whether transferred from another hospital. The 
expected mortality estimate for each hospital was then combined with observed deaths to 
calculate risk-adjusted HSMRs. 

The model was tested to determine how well it predicted or explained the actual variation in 
mortality rates. 
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HSMR analysis was conducted on three groups of cases, which exemplify types of general-
purpose indicators of in–hospital mortality: 

• high-risk cases (20% of cases, 80% of in-hospital deaths) 

• lower risk cases (all other in-scope cases; that is, the other 80% of cases including 20% of 
in-hospital deaths) 

• all cases and all in-hospital deaths. 

Data for 1 year were analysed initially. Longitudinal analysis was then done using  
3 years of data. This was a two step process. The first step was to calculate  
risk-adjusted HSMRs in a similar way to the 1–year analysis. The second step was  
two-stage multi-level logistic regression. 

The hospital peer group classification developed by the AIHW was used to group hospitals 
for comparisons. 

Results 
Overall, the results demonstrated that, using the Australian data, the RACM model 
predicted or explained the variation in mortality rates to a similar extent as models reported 
in the international literature. Some differences in the strength of the model were apparent 
when applied to the three mortality groups (80%, 20% and 100%): with better prediction of 
mortality rates for the 20% and 100% groups. 

Single-year analysis (2005–06) 
The single-year analysis resulted in the production of HSMRs and confidence intervals for 
public hospitals in peer groups. They are presented using HSMR ranked tables, funnel plots 
and caterpillar plots. Funnel plots illustrated that some hospitals had HSMRs that were 
relatively high or low compared with peer hospitals. 

Longitudinal analysis (2004–05 to 2006–07) 
The longitudinal analysis showed that most variation in HSMRs was between different 
hospitals, with much less variation between repeated measurements for the same hospital. 
The lack, on the whole, of large variation between measures of HSMR for the same hospital 
suggests that values largely reflect the phenomenon of interest (mortality rates), and are not 
dominated by ‘noise’ in the data. This is less true for peer groups of small hospitals. 

The results presented for the longitudinal analysis demonstrate a modest decline in overall 
risk-adjusted mortality during the 3–year period. This is similar to the findings of a recent 
Dutch study using the same method. Although replication of analysis and refinement of the 
method used should be undertaken before too much weight is place on this finding, the 
possibility remains that it is a true decline. If so, perhaps an increased emphasis on hospital 
safety in recent years is beginning to have a demonstrable effect on in-hospital mortality. 

Conclusions 
This project shows that indicators of in-hospital mortality can now be produced using the 
Australian National Hospital Morbidity Database. The present study produced indicators 
based on the three mortality groups specified above, reported by hospital in public hospital 
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peer groups. Our findings suggest that the available data are generally sufficient for this 
purpose. 

How should the HSMRs be used? Variations in hospital mortality should be viewed as 
screening tests rather than being diagnostic of poor safety or quality. High or rising HSMRs 
signal that a problem might exist and that further investigation is required. Low or falling 
HSMRs might signal good performance, from which lessons could be learned.  

Further work 
The report also describes a refinement to the RACM model—referred to as the elaborated 
risk-adjusted mortality (ERM) model—which consistently predicted mortality rates better 
than the RACM model. This model could be further investigated for its potential to generate 
indicators of in-hospital mortality. 

Further work is also warranted on several matters where data limitations prevented us from 
undertaking desirable aspects of analysis.  

Data matching to include deaths up to 30 days after discharge is technically feasible in 
Australia, as is internal linkage of the data on multiple episodes of care for individual 
patients. Both of these forms of linkage are routine parts of data linkage activities in some 
states. They could be used for a project to test these refinements of the data underlying 
HSMR, in preparation for later use of linked data for national indicators.  

The lack of a hospital identifier for many private hospitals prevented analysis of this sector—
a limitation that needs to be overcome in future analyses.  

Emerging data developments (national coding of conditions ‘present on admission’ to 
distinguish pre-existing comorbidities from complications of care) and analytical innovations 
(e.g. use of Bayesian regression, especially for data from small hospitals) are also likely to 
improve results.   
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1 Introduction 

1.1 Context of the report 
This project, Measuring and reporting mortality in hospital patients, is one of several conducted 
as part of the National Indicators Project commissioned by the Australian Commission on 
Safety and Quality in Health Care (the Commission). The purpose of the National Indicators 
Project is to systematically identify and develop information that can be used to monitor 
Australia’s performance in safety and quality in health care, for intra jurisdictional, inter-
jurisdictional and international benchmarking and reporting purposes.   

Measuring and reporting mortality in hospital patients aims to develop National indicator(s) of 
in-hospital mortality. The specified outcome for the project is: 

• The development of indicators of in-hospital mortality taking into consideration 
different types of measurement and/or presentation (e.g. disaggregation) that may be 
required at the national level, at jurisdictional level and at facility or unit level.  

In reaching this outcome, this project provides a detailed review of available literature: 
evaluating current developments in the measurement and presentation of in-hospital 
mortality indicators, as well as recommending in-hospital mortality indicators that can be 
produced using current administrative data sets.  

One of the strengths of mortality measures is that the fact of death is unequivocal and 
generally accurately reported. The task is to identify how measures of hospital mortality can 
be further developed to generate an indicator, or indicators, of hospital safety and quality 
more generally.  

Measuring and reporting mortality in hospital patients has two separate, but interdependent, 
components: a literature review focusing on methodologies for analysing and reporting in-
hospital mortality, including methods and models for risk adjustment; and a modelling 
project aimed at establishing what national indicators of hospital mortality can be developed 
now, and in the future.  

The modelling project provides a variety of worked examples of methods for analysing and 
presenting mortality rates using national data sets.  

1.2 Structure of the report 
The report contains six chapters of which this introduction is the first. Chapter 2 details the 
review of the literature and Chapter 3 introduces the modelling project itself. Chapter 4 
provides a description of the method employed, while Chapter 5 presents the results of the 
modelling. The report concludes with a discussion of the findings in Chapter 6. The report 
also contains Appendixes, including one on data issues. 
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2 Review of the literature 

2.1 General introduction: in-hospital mortality 
Although users of hospital care might consider variations in mortality rates to be of 
significance in their own right, the increased interest in them in recent years relates primarily 
to their role as indicators of broader issues in relation to the safety and quality of care 
provided within hospitals. 

2.2 Introduction to the literature review 
The narrative review that follows contains a broad introduction, and a description of the 
search process. Then there is an analysis of what is known about the extent of variations in 
hospital mortality rates, and of sources of variation; this incorporates a discussion of risk 
adjustment. There is a section devoted to the analysis of the relationship between variations 
in hospital mortality and other measures of safety and quality. Hospital mortality as an 
indicator is then assessed against a series of general and technical issues in relation to criteria 
for indicator development (Scobie et al. 2006). 

2.2.1 Developments from 1860 to present 
The issues around hospital mortality rates were clearly articulated in the middle of the 
nineteenth century (Spiegelhalter 1999). Between 1861 and 1865, the Journal of the Statistical 
Society of London published a series of articles describing hospital mortality rates, probably at 
the urging of Florence Nightingale. Nightingale advocated the publishing of uniform 
hospital statistics because these would ‘enable us to ascertain the relative mortality of 
different hospitals, as well as of different diseases and injuries...’(Nightingale 1863). 

Nightingale was very interested in the issue of quality within hospitals. She hoped that such 
statistics would ensure that ‘As regards their sanitary condition, hospitals might be 
compared with hospitals and wards with wards’ (Nightingale 1860). The kinds of dilemmas 
that the publication of such statistics would raise were also clearly understood by 
Nightingale, including the importance of risk adjustment for age, sex and complications 
(Nightingale 1863). These issues were well canvassed in the comments of Guy (1867) in 
relation to variations in the mortality of London hospitals.  

Guy stated that ‘it would be no less invidious than unjust to attribute the differing death–
rates of our hospitals, in an appreciable degree, to any difference in the professional skill and 
ability of their professional staff, chosen, as it is, from among those members of the 
profession [including himself] who have already given proofs of sound training, ability and 
skill in practice’ (Guy 1867).  

Although Guy (1867) attributed the variations in hospital mortality to casemix (‘…the 
mortality of hospitals is mainly due to causes which determine the nature and severity of the 
cases admitted within their walls…’), the mortality rates he quoted were not in fact adjusted 
for such variations, so the basis of his assertion is unclear.  
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Interest in variations in hospital mortality remained sporadic until the end of the 1980s, 
despite the unexpected findings of substantial inter-hospital variation in post surgical 
mortality in the National Halothane study in the USA conducted in the 1960s (Moses & 
Mosteller 1968). A review published in 1989 (Fink et al. 1989) could only find three articles 
(from 22 identified after a search) that contained any kind of adjustment for severity of 
illness, as well as demographic and health status issues. 

At that point, the forced release by the USA Health Care Financing Administration (HCFA) 
of mortality rates of Medicare patients for all Medicare provider hospitals led to a major 
surge in interest in the analysis of hospital mortality. It appears that there was concern that 
the introduction by HCFA of a fixed-fee prospective payments system for Medicare 
patients—based on diagnostic related groups—might lead to a decrease in the quality of care 
provided (e.g. Stern & Epstein 1985; Iglehart 1986). Calculations of hospital mortality were a 
monitoring activity related to the introduction of the prospective payments system.  

The public release of the HCFA information sparked considerable professional and 
community interest. Although subsequent studies confirmed that there were indeed 
variations in hospital mortality rates (e.g. Dubois et al. 1987; Chassin et al. 1989 Bradbury et 
al. 1991; Manheim et al. 1992; Thomas et al. 1993), a debate ensued as to the extent to which 
hospital level variations in mortality measures were sufficiently reflective of variations in the 
quality of hospital care to be broadcast to a  
non-professional audience, or to influence funding or purchasing decisions by insurance 
groups or other funders (Green et al. 1991; Hofer & Hayward 1996).  

The intensity of the questioning was such that in 1993 HCFA ceased producing mortality 
measures. But interest in mortality measures did not decline, and as concerns have been 
examined and health-care providers have become more used to the release of mortality data, 
the frequency with which comparative risk-adjusted mortality measures have been made 
available to institutions and the public at large has increased year by year, and country by 
country.  

2.3 Search method 
We searched PubMed (last search updated June 2008) with a focus on studies where 
mortality was the primary outcome.  

We searched with a variety of strategies using the following search terms: hospital mortality, 
review quality + risk-adjusted mortality, review risk-adjusted mortality, risk-adjusted 
mortality methods, risk-adjusted mortality rates, risk-adjustment methods, hospital 
mortality classification, history mortality measurement, quality  
risk-adjusted mortality rates, quality + risk-adjusted mortality rates, hospital standardised 
mortality ratios. 

We focused on studies that compared whole of hospital mortality rates and related the 
results to any evidence of quality and or safety. Although we did find many studies looking 
at only a single condition—such as acute myocardial infarction (AMI), coronary artery 
bypass grafting (CABG), and pneumonia—or only one hospital, those were not our primary 
interest. We aimed our review at studies that compared at least two hospitals. Studies that 
looked at mortality through the lens of organisational/structural variables, nurse–patient or 
physician–patient ratios, and public versus private funding were not our prime focus.  
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In our search we paid particular attention to national mortality rate reporting that has 
recently been undertaken in the United Kingdom, United States, Canada and Holland. 

For all studies, the authors decided final inclusion/exclusion by discussion and consensus.  

2.4 Considerations in the development of mortality 
as an indicator 

2.4.1 Random and systematic variation 
Before any attempt is made at interpreting or using hospital mortality data, a basic issue 
needs to be understood and responded to.  

Hospital mortality is a special case of a more general issue related to the analysis of 
variations in the outcomes of any intervention (Thomas & Hofer 1998) when the factors 
involved are both systematic and random. As with any other outcome in biomedicine, 
variations in mortality outcomes following hospitalisation can be thought of as having at 
least two components:  

• systematic variations in factors that may influence [mortality] outcomes; those variations 
being assumed to relate to the quality and effectiveness of the interventions that affect 
the outcome in question 

• random variations. 

The random variations may have a variety of origins. There are random variations in the 
moment-by-moment effectiveness of biomedical interventions, even when they are optimally 
applied. There are random variations in the interaction between optimally applied 
interventions and the immediate states of the people to whom those interventions are 
applied, and random variations during attempts to implement evidence-based interventions 
(the systematic consequences of the longer term characteristics, or traits, of those people are 
best thought of as confounders of systematic variation and are considered below).  

In biomedical research, the uncertainties due to random variations are optimally dealt with 
by a process of randomisation. When patients are randomly allocated to the settings or 
interventions of interest, the presence of a systematic effect is confirmed by assessing the 
magnitude of differences in outcomes between sites or interventions, taking overall 
variability into account. The fundamental analytical question is whether the observed 
differences are so large that they are unlikely to have occurred by chance alone. 

Hospital mortality measures are measures of outcomes in the usual care provided by 
hospitals. There is no possibility of random allocation of patients to different sites. The 
question of whether observed differences are so large that they are unlikely to have occurred 
by chance can only be assessed by comparing the outcomes for a patient or group of patients 
treated in any one hospital against a hypothetical outcome that might have occurred if the 
patient(s) had undergone treatment elsewhere. 

The most straightforward way to do that would be to assess the average outcome across the 
population being assessed and use that to calculate the expected outcome (and confidence 
limits around the value) for the number of patients treated at any one hospital. The observed 
(actual) and expected values for the numbers of patients treated would be compared and a 
decision made as to whether any hospitals stand out as being ‘extreme’ in terms of 
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differences between observed and expected outcomes. However, a simple comparison on 
that basis is likely to be both inaccurate and misleading. 

Patients are non-randomly allocated (and self referred) across institutions. The use of crude 
averages ignores patient-level differences between institutions that might systematically 
influence outcomes. These confounding factors, combined, may be described as variations 
due to the clinical, demographic and casemix differences between patients present at the 
point of arrival in hospital (VC). In which case, total variation in in-hospital mortality (V) 
comprises: 

• systematic variations in factors influencing mortality outcomes; those variations being 
assumed to relate to the quality and effectiveness of the interventions that affect the 
outcome in question (VQ)  

• variations due to the clinical, demographic and casemix differences between patients 
present at the point of arrival in hospital (VC) 

• random variations (VR). 

In most studies of hospital mortality, efforts are made to discount VC  before assessing the 
magnitude of any inter-hospital differences (Thomas & Hofer 1998). The measurement of VC 

for this purpose is usually described as risk adjustment because pre-existing patient-level 
factors influence or confound any other institutional-level factors that might influence the 
risk of dying in hospital. There is also the possibility that there are some confounding factors 
related to the characteristics of the functional catchment areas of hospitals that are not 
captured in existing individual-level measures, and that need to be accounted for by 
inserting measures of social disadvantage into analyses (Jarman et al 1999). Whilst there is 
disagreement as to whether such influences should or should not be adjusted for, the 
question of the influence of catchment population measures on in-hospital mortality in the 
Australian context is assessed empirically in this project (Section 5.9). 

Much of the criticism of the release of the HCFA mortality studies of the 1980s (Rosen & 
Green 1987; Berwick & Wald 1990; Green et al. 1991) related to the fact that the risk 
adjustment was confined to the impact of each patient’s principal diagnosis and four 
secondary diagnoses, and demographic factors of age, sex, race, and whether the patient had 
been transferred from another hospital. Critics argued that this was too simplistic to 
adequately adjust for patient-level variations between institutions (Green et al. 1991).  

2.4.2 Mortality at what point: in-hospital, 30 days after discharge, or 
longer? 
Another common complaint in the literature following the release of the HCFA data was that 
many of the effects of hospital care do not become evident until after patients leave hospital. 
Also, if studies of variations in mortality rates were to be confined to deaths during hospital 
stays, hospitals might be tempted to discharge poor prognosis patients to minimise in-
hospital mortality (Omoigui et al. 1996)  

By linking hospital data with relevant information from death registers, a number of 
investigators have assessed the relationship between mortality during hospital stay and 
mortality 30 days after discharge (Jencks et al. 1988; Chassin et al. 1989, Rosenthal et al. 2000) 
or longer (Fleming et al. 1991; Garnick et al. 1995). Inclusion of deaths in the thirty-day 
period after discharge appears to be sufficient. After an exhaustive study, Garnick et al. 
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(1995:693) concluded that ‘mortality occurring after 30 days has little to do with hospital-
specific effects…’ 

As may be expected, mortality up to 30 days after discharge is tends to be similar to in-
hospital mortality (e.g. Rosenthal et al. 2000), but this is not necessarily so, and variations 
have the potential to be informative. Assessing mortality up to 30 days after leaving hospital 
provides the opportunity to assess effects of variations in discharge policy (Jencks et al. 1988) 
and of immediate post-discharge care.   

Whilst it may thus be preferable to assess mortality in a manner that includes deaths up to 30 
days after discharge, it is not always feasible to do so, and the gain in precision by taking 
account of mortality after discharge has to be traded against the greater complexity involved 
in linking hospital administrative information with other registry data (Krakauer et al. 1992). 
However, developments in population-level data linkage capabilities, such as the Western 
Australian Data Linkage System and the work of the Centre for Health Record Linkage in 
NSW, are reducing this barrier and will offer further opportunities in the future.   

2.5 Model development 

2.5.1 What variables to include in risk adjustment 

Demography and diagnosis 
The risk-adjustment hypothesis is that observed rates of in-hospital mortality will be 
systematically influenced by the characteristics of patients on arrival at the hospital.  

It seems reasonable to assume that the risk of death during a hospital stay is likely to be 
influenced by factors such as age, sex, primary clinical diagnosis and secondary or 
complicating diagnoses present at admission. Information on these types of factors is 
commonly collected within administrative data sets—that is, within information about 
individual patients collected by hospitals for internal and external administrative reasons 
and mandatory reporting requirements. Hospital-level administrative data sets in Australia 
and elsewhere also commonly contain information about arrival and discharge dates, home 
address, source of referral, whether the admission was as an emergency or planned, and the 
nature of discharge. Information about ethnicity may or may not be available, along with 
other jurisdiction-specific information. 

Severity 
Administrative data sets do not usually contain much information about the severity of the 
principal diagnosis, though this varies between diagnoses. For example, Australian data 
coded according to the International Classification of Diseases Australian Modification of the 
ICD (ICD-10-AM) do not usually provide information on the severity of an uncomplicated 
case of community-acquired pneumonia over and above the diagnosis itself. The same 
classification does, however, distinguish depressive episodes as mild, moderate, severe and 
severe with psychotic symptoms, and liver lacerations as minor, moderate and major. 

Severity is neither a simple nor a uniform characteristic, nor easily or uniformly assessed. For 
instance, the severity of heart disease may be inferred from physiological or medical imaging 
data reports, whereas the severity of schizophrenia is best determined by clinical judgment. 
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Institutional characteristics 
Many administrative data sets that report patient-level data also characterise the reporting 
institutions in some way. The basic requirement is for a field in patient-level records that 
records the treating hospital1. This is particularly important when a data set contains 
outcomes from both large principal referral hospitals, and small institutions. The case loads 
of small hospitals are often quite different from those of tertiary institutions. Patients in 
smaller institutions can appear to be at lower risk than patients in larger institutions, even 
after risk adjustment. However, it is not appropriate to assume that the smaller hospital 
could achieve similar types of outcomes if they were confronted with the kinds of patients 
that tertiary institutions have to deal with. A low-risk hospital is only low risk for the kinds 
of cases it is familiar with (Shahian & Normand 2008). So, institution type is a relevant issue 
when making comparisons. Risk adjustment itself is, however, best undertaken at the level of 
the patient, not the institution (e.g. Hadorn et al. 1993). 

2.5.2 Logistic regression and risk adjustment 
The ‘mechanics’ of risk adjustment—once potential risk modifying factors have been 
identified—are well established. Taking hospital mortality as the dependent variable, the 
influence on outcome of various independent variables (or contributors of mortality) is 
assessed by means of logistic regression: the appropriate analytic strategy for binary 
(survive/dead) outcomes. Logistic regression allows development of a linear equation for 
the log (odds) of a positive outcome. The log (odds) increases by the magnitude of the 
coefficient for each unit increase in the independent variable. For example the log (odds) of a 
positive outcome for male versus female increases by the coefficient for sex, if male is coded 
1 and female is coded 0. 

The exponentiated coefficients can then be interpreted as the change in the odds of a positive 
outcome for a unit increase in the associated independent variable  
(i.e. covariate). 

The coefficients from logistic regression can also be applied to create a predicted probability 
of an outcome of interest (i.e. death) for each individual in the data set. The probabilities for 
each particular pattern of covariate values effectively create a set of reference weights that 
relate to the population of hospitals as a whole, enabling standardisation of each individual 
hospital to a reference hospital population. The aim is to profile how the results for a 
particular hospital compare with what would be expected if that hospital functioned in a 
way that was typical for the whole population of hospitals studied. 

2.5.3 Logistic regression, indirect standardisation and HSMR 
Each patient in any one hospital will survive or die. The sum of all the deaths divided by the 
total number of hospital separations is the crude in-hospital mortality rate for that hospital. 
By calculating the probability that any one patient in a population of patients will die (or 
survive) using the logistic regression coefficients and covariate values relevant to that 
patient, it becomes possible to compute the standardised mortality rate for that institution; 
that is, a mortality rate that is adjusted for its casemix. 

                                                      
1 Some private hospitals are not identified as separate establishments in the Australian hospitals data available for this project (see Appendix 5 Data issues). 
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Indirect standardisation of hospital mortality rates is the term given to the comparison of the 
observed mortality rates against the expected rates as generated from the study of all the 
patients within the hospital populations studied. Those expected rates become the 
denominator of the ratio of observed to expected outcomes (O/E). A ratio value less than 1 is 
favourable and a ratio of greater than 1 unfavourable. When the ratio is multiplied by 100 the 
convention is to describe that value as the Hospital Standardised Mortality Ratio (HSMR) 
(Jarman et al. 1999). 

Although the computational method used in risk adjustment for the calculation of hospital 
level HSMRs is now fairly settled, the range of contributing variables that might be included 
in the regression equation is almost without limit. In practice, there is an emerging consensus 
on which variables to include in studies analysing the majority of deaths occurring within 
hospitals (as distinct from studies dealing only with deaths of specific types). 

2.5.4 Narrowly focused or broad studies 
Which patients should be included in the study of mortality rates? Should the study be 
narrow focused or more broadly based? 

Over the years, studies have examined mortality rates in single conditions, small groups of 
diagnoses with high predicted short-term mortality, patients from diagnostic groups in 
which the majority of deaths within hospital occur, or all patients treated with a limited 
number of exclusions. Despite the substantial potential differences involved, there has been 
little discussion of the rationale behind any one choice, though there are some practical 
issues to be considered.  

Studies of hospital mortality easily accumulate very large numbers of subjects; for example, 
the national data set for all separations from Australian hospitals in the financial year 2005–
06 contains some 6 million individual records. Data sets from countries with higher 
populations, such as the UK or USA, will be proportionately larger. 

The surge in interest in hospital mortality began in the late 1980s. Although it is not explicitly 
discussed in the literature, very large data sets were not as easy to handle at that time as they 
are now. The greater expense then of acquiring access to sufficient computing power would 
have been a consideration in favour of opting to confine analyses to subsets of the whole 
population of patients treated in hospitals.  

A limited number of clinical conditions accounts for the majority of deaths within hospital. 
When analyses examine mortality rates within the diagnosis groups that account for 80% of 
all hospital deaths, clinical diagnoses—albeit somewhat simplified or consolidated—can be 
included directly within risk-adjustment methods (e.g. Kahn et al. 1990). Once studies 
encompass all deaths within a population of hospital patients, then some means of 
aggregating diagnoses into larger groups is required because the numbers of individual 
diagnoses are just too large for all those diagnoses to be individually included in risk-
adjustment computations.  

In all studies, provision is made to exclude those patients for whom death in hospital is 
integral to the service provided. Strategies have been developed to deal with  
palliative-care-type hospital separations (CIHI 2007). In Australia, palliative care is 
designated within administrative data sets as a care type that can only be provided in a 
designated Palliative Care service. It is straightforward to exclude such patients. In settings 
where that is not possible, other arrangements are required to deal with potential palliative-



 

9 

care issues, such as excluding patients with a primary diagnosis of cancer (e.g. Lakhani et al. 
2005). 

Restricting the analysis of mortality to a small number of conditions may be relevant if there 
is a strong interest in linking mortality outcomes with specific process measures. Otherwise, 
a broader sample of in-hospital deaths is likely to provide a more representative population 
for analysis. The case for confining a more broad-based analysis to the higher risk diagnoses 
that account for 80% of deaths—instead of all  
in-hospital deaths—has not been formally argued, and relates more to convenience and the 
capacity to include primary diagnoses as they stand within the risk-adjustment process, than 
to other issues of substance. The analyses further include high-risk diagnoses, low-risk 
diagnoses, and all causes of mortality. 

2.5.5 Summary measures of model performance 
The underlying rationale for logistic regression is that the risk of an event in relation to risk 
factors falls along a logistic curve. The s-shaped logistic curve is shown below, where 0 on 
the y-axis is alive, and 1 the outcome dead, and the values between are the probabilities of 
the outcome. 

Logistic regression analyses are mathematical models that attempt to fit the data to the 
logistic curve. Commonly asked question of such models are ‘How good is it? What is its 
predictive validity—how well does the model account for the actual variation in patient-level 
risks (Shwartz & Ash 2003)?’ 

There is some controversy in the technical literature about what, if any, are the best summary 
measure to use to answer such queries. There are two issues to be considered: null model 
and goodness of fit.  

 

 

 Figure 1: Example of an s-shaped logistic curve 
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2.5.6 Null model 
Firstly, do the models created improve upon the ‘null model’? Say we are interested in 
examining the mortality at St Elsewhere—one of a population of hospitals for which  
in-hospital mortality is being studied. If there is no opportunity to risk adjust by reference to 
additional variables, the only way to define the expected numbers of deaths in St Elsewhere 
is to take the average death rate for all hospitals and apply that rate to the total number of 
patients treated in St Elsewhere, deriving a predictive ‘null’ model using that information 
alone.  

If patient-level confounders are important, adding them to the model will improve 
predictive power over a model with no other adjustment variables. Whether any 
improvement is statistically significant may be tested by means of a likelihood ratio (LR) test. 
LR tests examine the predicted probabilities of living among those who lived, and the 
predicted probabilities of dying amongst those that died. Better models have higher LRs (i.e. 
more of the living were predicted to have lived, and more of the dying were predicted to 
have died). 

2.5.7 Goodness of fit 
Goodness of fit is a somewhat different question. The issue is not ‘does it fit better than the 
null model?’ What is being asked is ’how well does the model fit?’ It may be better than 
chance, but how strong is the relationship?  

The challenges posed by such questions are best appreciated by comparing logistic 
regression models with the more straightforward measures generated for linear 
relationships. There, the relationships between the dependent and independent variables can 
be considered as potentially falling along a straight line. When increases in the independent 
variables are perfectly mirrored in increases in the dependent variables, an equation linking 
the two groups of variables will predict 100% of the variability in the values of the 
dependent measure. If there is no link at all, then the equation will predict 0% of the 
variability. By calculating the R2 statistic, the percentage of variability explained by the 
equation can be calculated (i.e. how closely do the points in the scattergram linking 
independent and dependent relationships fit to a straight line?). 

R2 (or pseudo R2, a related measure) can be calculated in logistic regression, but the results 
cannot be interpreted in the same way as in a linear regression. The issue of interpretation 
goes back to the fact that a logistic regression is an attempt to predict the degree to which a 
group of variables (such as age, sex, and admission status) predict a binary (alive/dead) 
outcome, not a graded one. Conceptually, the analytical question asked is ‘does a risk-
adjusted equation produce a result that, when applied to a population, sharply separate the 
population who are alive at discharge from those that die in hospital, with limited overlap 
between the two groups?’ The problems with interpreting R2 as a measure of ‘model fit’ for 
logistic regressions were summed up (Schwartz & Ash 2003) in a discussion of the 
publication of CABG data in New York (Chassin et al. 1996).  

‘In logistic-regression models in which the overall mortality rate ranges from 2 to 4 per 
cent, however, R2 is almost always less than 0.2. This limitation arises from the nature of 
logistic regression, in which the dependent variable must have one of only two values 
(in this case survival or death). When the differences between actual and predicted 
mortality rates is calculated for each person (as part of the calculation of R2) no matter 
how accurate the prediction is, the difference between the predicted value and the 
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observed value for the mortality will be large, because the observed mortality must be 
either 0 or 1, and the prediction is a proportion between 0 and 1.’ (Chassin et al. 1996: 
396–7). 

Using changes in R2 to assess the impact of adding or subtracting variables within a logistic 
regression model remains valid, however, because this is using it in a  
variable-by-variable comparison, rather than in an attempt to provide a single statistic 
against which to assess model fit. 

2.5.8 The c-statistic 
A better measure of discrimination is the c-statistic, which also equals the area under a 
receiver-operator curve (ROC). The c-statistic has a number of definitions, but one is as 
follows.  

‘Within a population, take all the possible pairs in which one patient dies and the other 
survives. Assign a probability of death for each patient in each pair. The  
c-statistic equals the proportion of cases in which the predicted probability of death is 
higher for the patient who died than the patient who lived. When the probability is tied, 
the assigned value is one half—that is, there is a 50:50 chance of being right or wrong. So 
when models have no ability to discriminate—that is, to truly assign a probability of 
death while minimising false positives—the c-statistic is 0.5. Although there are no 
absolute hard and fast rules, models generating a  
c-statistic value below 0.7 are considered to be poorly discriminatory, models with a c-
statistic 0.7–0.8 are more adequate, and above 0.8 a good discrimination’ (Aylin et al. 
2007). 

As will be shown below, many risk-adjustment models for mortality have c-statistics in the 
range 0.8 and above. 

2.5.9 Risk adjustment across the range of predicted probabilities 
Many studies of hospital mortality will involve patients across a wide range of risk. One 
method for assessing the robustness of risk adjusters across the whole range is the Hosmer–
Lemeshow method (Hosmer & Lemeshow 2000).  

Patients are divided up into deciles of predicted risk and the observed and expected values 
of mortality (derived from applying the coefficients of the logistic regression to the 
populations) calculated for each decile. The distribution of the deviations within each decile 
follows the chi2 distribution, and the model is accepted if the observed deviations or 
differences are less than would be expected by chance. Despite the elegance of this method, 
the Hosmer–Lemeshow test, like all chi-square tests, is sensitive to sample size, and may not 
be suitable for studies with large samples (Schwartz & Ash 2003; Aylin et al. 2007). The direct 
comparisons between observed and expected values at deciles of risk may be of considerable 
interest (Aylin et al. 2007), and may provide insights into the impact of risk adjustment 
without further analysis. 
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2.5.10  Calibration 
An entirely different issue is that of calibration. Because the risk-adjustment process begins 
with the calculation of an expected or average outcome, the overall observed and expected 
outcomes will be identical, because the expected is the average of the observed.  

When a risk-adjustment equation is calculated in one population and then applied to a quite 
different one, the calculated expected number of deaths will not necessarily be the same as 
the observed. The question arises as to whether the expected results should be calibrated, or 
adjusted in some way, so that the overall expected and observed values resemble each other. 
A number of calibration methods have been suggested in the literature (see DeLong et al. 
1997) but, although this is a theoretically important issue, and would need to be considered 
carefully if there were any attempt at a  
cross-national comparison of HSMRs, it has only received limited empirical study to date.  

So, in summary, there are a variety of measures that can be used to assess the robustness of a 
risk-adjustment process for binary outcomes, but none give a simple answer to the question 
‘how good is the fit?’ 

2.6 Inter-hospital variation and risk-adjustment 
models 

2.6.1 Hospitals differ 
After interest in variations in hospital mortality picked up following the publication of the 
HCFA data, the fact of highly statistically significant variations in in-hospital mortality rates 
have been confirmed in every country where they have been studied (e.g. Chassin et al. 1989; 
Kahn et al. 1990; Jarman et al. 1999; CIHI 2007; Heijink et al. 2008), in public and private 
hospitals alike (Devereux et al. 2002).  

2.6.2 Risk adjustment—administrative data sets 
Table 1 provides a listing for the R2 and c-statistic values for a variety of reports of risk-
adjustment models, and the values for the areas under the ROC where provided.  

Numerous reviews of the outcomes of risk adjustment using administrative and other data 
sets have been published over the years (e.g. Hadorn et al. 1993; Iezzoni 1997a; Thomas & 
Hofer 1999; Powell et al. 2003; Daley et al. 2003), and it is now possible to draw some overall 
conclusions. 

Administrative data sets contain a restricted amount of information at the patient level. 
Demographic information, mode of admission (emergency or elective, transfer from other 
care facility or direct) and duration of admission, care type, mode of discharge, principal and 
secondary diagnoses, surgical procedures, and institutional identifiers are almost always 
available. The Australian administrative data sets separate types of care into acute, 
rehabilitation and palliative care. Information about previous admissions and linkage across 
hospital and community services are less common.  
(The spreading availability of data linkage facilities in Australia is overcoming this 
limitation.)  
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In the UK, there have been particular difficulties relating to the use of multiple consultant-
completed episodes within a single admission that have had to be overcome (Jarman et al. 
1999), but that is not a widespread problem outside the UK. 

The most important changes over the years have related to the increase in the number of 
primary and secondary diagnoses that are contained within administrative data sets, with 
restricted numbers (e.g. in the HCFA) now commonly replaced by more exhaustive 
enumerations in many countries. For example, the current Australian National Morbidity 
Collection allows for the reporting of one primary and  
49 secondary diagnoses, and up to 50 procedure codes.  

A more subtle issue relates to the notion of what constitutes the principal diagnosis for a 
patient. In most systems that derive from the Medicare-derived USA prospective payment 
systems, the convention is that the primary diagnosis is the diagnosis that, after study, was 
the primary condition leading to hospital admission. But in the large USA Department of 
Veteran Affairs system, it is the condition primarily responsible for the length of the 
hospitalisation (Daley et al. 1997, Iezzoni 2003b). In Australia, principal diagnosis is defined 
within the National Health Data Dictionary as ‘The diagnosis established after study to be 
chiefly responsible for occasioning an episode of admitted patient care, an episode of 
residential care or an attendance at the health-care establishment’ (AIHW 2006). The 
specification of the principal diagnosis may have an important bearing on the risk rating of 
each patient.  

Although concerns have frequently been raised over the accuracy of coding of diagnoses 
(e.g. Iezzoni 1997a, Scott & Ward 2006) those concerns have tended to become less prominent 
in recent years, as countries have become familiar with the work of professional coders, and 
as work on coding standards and coding practice has become increasingly refined. 

Within the National Hospital Minimum Dataset, only a small percentage of cases are 
recoded due to an error (AIHW 2007), with most errors being in the direction of  
‘up-coding’ in the direction of increased complexity, which would tend to reduce any 
measure of hospital mortality because observed mortality would tend to be less than 
expected mortality in those cases. 

Studies of the outcome of risk adjustment via administrative data systems have been 
reviewed on a number of occasions (e.g. Hadorn et al. 1993; Iezzoni 1997b; Thomas & Hofer 
1999; Powell et al. 2003; Daley et al. 2003), and a number of different methods for combining 
the information within administrative data sets have emerged, including a number of 
proprietary methods developed in the USA (e.g. the APR-DRG system, Disease Staging). 
However the R2 model statistics reported in Table 1 have not varied from the 0.2 to 0.3 levels 
reported by Hadorn et al. in 1993, and the c-statistic levels continue to typically range from 
0.7 to 0.8 or slightly above. 

In the next section, the addition of clinical elements to risk adjustment is discussed. Because 
it stretches across both administrative and clinical risk-adjustment methods, a discussion of 
the integration of comorbidities in risk adjustment is undertaken further on. 

2.6.3 Risk adjustment—the addition of clinical factors 
Clinicians make judgments based on the clinical characteristics of their patients, so it would 
seem axiomatic to those practitioners that outcome predictions that include clinical 
information would be an improvement over those that do not. It is not surprising, therefore, 
that considerable effort has gone into the search for clinical elements to test in risk-
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adjustment models. The rationale for those attempts was put elegantly by Hadorn et al. 
(1993: 1–2), ‘Statistical prediction models rely on the same clinical and demographic factors 
(e.g. age, blood pressure) used by clinicians to arrive at prognostic judgments. Unlike 
clinicians, however, models assign explicit weights to these factors based on their observed 
statistical association with the outcome of interest (e.g. mortality) in some sample of patients. 
As a result, prediction models render precise (if not always accurate) predictions of outcome 
or diagnosis.’  

The simplest of these strategies has been to model physiological data (e.g. blood pressure in 
the first 48 hours of stay) or laboratory test values (for potassium, haematocrit, and so on), 
and include them as confounders within models to risk adjust mortality data. Then there are 
strategies that generate condition-specific measures combining laboratory and clinical 
elements, using guidance from clinical panels or other sources of clinical advice to choose 
from among candidate variables, extracted from case notes by trained reviewers, to test in 
risk adjustment. 

Finally, there are proprietary services (e.g. MedisGroups) whose trained personnel 
(commonly nurses) review case records and extract and tabulate many different features of 
interest that can be tested in risk-adjustment studies. Iezzoni (1997a, 1997b) describes the 
origin of one of the most widely used of these methods, the MedisGroups listing of key 
clinical findings, in the observations made by two physicians from Saint Vincent’s Hospital 
in Worcester, Massachusetts, after participating in the morning reporting process of medical 
residents. These observations eventually became the initial list of what are now hundreds of 
key clinical findings. 

Table 1 provides a selection of the model parameters from risk-adjustment models using a 
variety of clinical risk parameters. Although many of them do improve on the R2 for the risk-
adjustment methods based on administrative data, the gain is often modest. 

Given the variety of administrative and clinical risk-adjustment methods that have emerged, 
the series of studies of Iezzoni and colleagues conducted during the mid 1990s are 
particularly important (the outcomes are tabulated in Table 1, and overall outcomes 
summarised in Iezzoni (1997a, 1997b). These researchers compared a wide variety of risk-
adjustment methods using a single data set as the test or trial data source. They directly 
compared a wide variety of risk-adjustment methods for AMI, coronary by-pass artery 
grafting, pneumonia or stroke, and compared five of the methods on all four diagnostic 
groups.  

The risk-adjustment methods studied included Disease Staging, All-Patient Refined 
Diagnostic Related Groups (APR-DRGs) and Patient Management Categories (PMC): all 
three being proprietary risk-adjustment methods that made use of discharge abstracts (i.e. 
administrative data sets). MedisGroups and the APACHE 111 system represented risk-
adjustment methods that made use of physiological and or clinical data.  

The results were clear. Although risk adjustment is necessary for valid comparison of 
hospitals or groups of hospitals, no particular method stood out as preferable. Whilst the 
methods tend to agree on high and low mortality outliers, no one method provided 
markedly more specific and consistent discrimination than the others. 
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Table 1: Risk-adjustment-model outcomes 

Year First author Condition(s)/severity adjustment R2 C ROC 

1985 Knaus ICU—Apache 1 0.31  0.851 

  ICU—Apache II 0.319  0.863 

1990 Keeler  stroke—Apache II 0.30   

  pneumonia—Apache II 0.26   

  myocardial infarction—Apache II 0.22   

  heart failure—Apache II 0.12   

1991 Knaus ICU—Apache III on initial day 0.41  0.90 

1992 Krakauer  multiple—demographic model 0.64  

  multiple—claims model 0.84  

  multiple—clinical model 0.90  

1994 Hannan CABG 0.79  

1995 Green CABG 0.073   

1995 Romano AMI—model A 0.766  

  AMI—model B 0.844  

  Lumbar diskectomy—model A 0.722  

  Lumbar diskectomy—model B 0.73  

  Cervical diskectomy—model A 0.702  

  Cervical diskectomy—model B 0.744  

1996a Iezzoni  pneumonia—medisgroups or 0.13 0.81  

  pneumonia—medisgroups exp 0.19 0.85  

  pneumonia—physiology 1 0.10 0.78  

  pneumonia—physiology 2 0.15 0.82  

  pneumonia—body systems count 0.05 0.71  

  pneumonia—comorbidities index 0.06 0.74  

  pneumonia—disease staging 0.13 0.80  

  pneumonia—PMC severity score 0.11 0.79  

  pneumonia—AIM 0.05 0.73  

  pneumonia—APR DRGs 0.10 0.78  

  pneumonia—PMC RIS 0.1 0.78  

  pneumonia—R DRGs 0.28 0.83  

  pneumonia—age sex interact only 0.03 0.67  

  pneumonia—age sex interact, DRG 0.04 0.71  

1996b Iezzoni  AMI—medisgroups or 0.17 0.80  

  AMI—medisgroups exp 0.23 0.83  

  AMI—physiology 1 0.18 0.82  

  AMI—physiology 2 0.23 0.83  

  AMI—disease staging 0.27 0.86  

  AMI—PMC severity score 0.18 0.82  

  AMI—comorbidity index 0.06 0.70  

  AMI—APR DRGs 0.20 0.84  

  AMI—R DRGs 0.15 0.80  

  AMI—age sex interacted 0.05 0.69  

(continued) 
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Table 1 (continued): Risk-adjustment-model outcomes 
Year Author Condition(s)/severity adjustment R2 C ROC 

1997a Iezzoni  AMI—medisgroups 0.227 0.83  

  AMI—Physiology score 0.229 0.83  

  AMI—disease staging 0.27 0.86  

1997b Iezzoni  AMI—PMC severity score 0.176 0.82  

  AMI—APR DRGs 0.198 0.84  

  CABG—Medisgroups 0.036 0.73  

  CABG—Physiology score 0.028 0.72  

  CABG—Disease staging 0.069 0.77  

  CABG—PMC severity score 0.079 0.8  

  CABG—APR DRGs 0.066 0.83  

  Pneumonia—Medisgroups 0.19 0.85  

  Pneumonia—Physiology score 0.149 0.81  

  Pneumonia—disease staging 0.132 0.8  

  Pneumonia—PMC severity score 0.115 0.79  

  Pneumonia—APR DRGs 0.101 0.78  

  Stroke—Medisgroups 0.265 0.87  

  Stroke—Physiology score 0.242 0.84  

  Stroke—Disease staging 0.112 0.74  

  Stroke—PMC severity score 0.101 0.73  

  Stroke—APR DRGs 0.105 0.77  

1997 Silber  Adult surgical—Medisgroups full model 0.92  

  Adult surgical—without severity score 0.83  

  Adult surgical —without everity/emergency 0.74  

1997 Pine AMI, cerebro, CHF, pneumonia—admin  0.75–0.87 

  AMI, cerebro, CHF, pneumonia—clinical  0.86–0.87 

1997 Khuri Non-cardiac surgery—10 variables 0.87  

  Non-cardiac surgery—44 variables 0.89  

1998 Polanczyk CHF 0.83  

1999 Ansari Prostatectomy 0.24 0.89  

2001 Austin AMI  0.775 

2003 Tekkis Gastrooesphageal cancer  0.78 

2003 Reed  CAB—Parsonnet/recalibrate 
0.752–

0.805  

  CAB—Canadian/recalibrate 
0.693–

0.755  

  CAB—Cleveland/recalibrate 
0.748–

0.769  

  CAB—New York/recalibrate 
0.735–

0.768  

  CAB—Northern New England/recalibrate 
0.772–

0.803  

  CAB—New Jersey/recalibrate 
0.787–

0.839  

2005 Geraci CABG 0.698  

2005 Gordon Non-cardiac surgery 0.65–0.83  

2007 Aylin isolated CABG, AAA, colorectal  0.66–0.803 



 

17 

2.6.4 Over-fitting 
The Iezzoni study touched on an important issue in relation to risk adjustment based on 
clinical parameters. Risk adjustment involves assessing the extent to which  
patient-level parameters—present at the point of admission—predict an outcome at a future 
point. The closer a risk-adjustment model is tailored to a particular condition, or to a 
particular clinical setting, the less likely it is be as precise when applied to other conditions or 
other settings. There is no intrinsic reason why a risk-adjustment method that is tailored to 
predict the outcome of one condition, such as myocardial infarction, should predict the 
outcome of another condition, such as pneumonia, because the physiology, pathology and 
the range of potentially beneficial interventions are quite different.  

Statistically, the risk of adjusting too closely to a particular casemix, is called  
over-fitting. It is assessed by means of cross-validation measures, but the problem of over-
fitting represents a natural ceiling for the development of clinical risk-adjustment methods 
for studies of mortality across a wide range of patients. Risk-adjustment methods that have 
been developed on specific patient groups, or within specific clinical settings, will lose 
precision when applied across a broader range of patients and settings. This reinforces the 
utility of risk-adjustment methods that make use of the more general information in 
administrative data sets.  

One simple test for over-fitting is to divide a data set into a test set and a confirmatory set. 
When the model developed with the test set is fitted to the confirmatory set, if the precision 
deteriorates markedly with the confirmatory set, over-fitting is likely to have occurred. 

2.6.5 Further comparisons between risk adjustment from 
administrative and clinical databases 
In an important recent study, Aylin et al. (2007) compared the discriminatory capacity of 
risk-adjustment models for in-hospital mortality derived from an administrative data set 
with models based on clinical databases compiled by professionals. 

The clinical databases were compiled by the Society of Cardiothoracic Surgeons, the Vascular 
Surgical Society of Great Britain, and the Association of Coloproctology of Great Britain and 
Ireland. The conditions whose mortality was recorded were isolated CABG, repair of 
abdominal aortic aneurysm (AAA), and colorectal excision. The administrative data set was 
the UK hospital episodes statistics, with the completed consultant episodes that comprised 
each admission merged together. 

The authors calculated the c-statistic for both a simple model derived from the 
administrative data (just the year of procedure, age and sex), and more complete models 
with primary and secondary diagnoses, method of admission, Charlson index for secondary 
diagnoses (see below), and socioeconomic deprivation. The models derived from the 
administrative data sets were compared in relation to discriminatory power against the 
published results of risk-adjusted models using the clinical data in the database, as generated 
by the holders of the databases. 

The results clearly demonstrated that the models based on administrative data were as 
successful in discriminating cases as those derived from the clinical databases. For the 
repairs of AAA and colorectal excision for cancer, the models based on the administrative 
data showed better discrimination, and for isolated CSBG, the c-statistic was only different 
by 0.02.  
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Models derived from administrative data systems have also proved to be adequately 
discriminatory in a study of post surgical outcomes in the Department of Veteran Affairs 
surgical clinical improvement program (Geraci et al. 2005, Gordon et al. 2005). 

2.6.6 The Charlson Index 
Although biomedical knowledge and evidence-based practice are often derived from studies 
of isolated clinical disorders, patients themselves will commonly suffer from a mixture of 
conditions. This is increasingly important as the population ages. So  
risk-adjustment methods need to reflect that complexity. The dilemma is that there are so 
many potential individual and combined clinical comorbid confounders, that some method 
of data reduction or simplification becomes necessary if comorbid complexity is to be 
included in risk adjustment for mortality or morbidity. 

In 1987, Mary Charlson and colleagues (Charlson et al. 1987) published a paper describing an 
index—since widely known as the Charlson Index—in which groups of clinical conditions 
were assigned numerical weights whose additions combined to generate an interval score 
that predicted increasing likelihood of death over a 1 year or longer period. The original 
paper described a score with values from 1 to 16. 

There is now a very extensive literature relating to the use of the Charlson index as a 
measure for predicting mortality in many settings, and it soon became apparent that it was a 
useful method for grouping comorbidities in hospital mortality studies (Iezzoni et al. 1996a; 
Polanczyk et al. 2002; Romano & Mutter 2004; CIHI 2007; Heijink et al. 2008; Aylin et al. 
2007). 

Although the original version was in the ICD-9 diagnostic system, it has been converted to 
the ICD-10, (Sundararajan et al. 2007) with no loss of precision. 

Computerised systems exist for grouping secondary diagnoses in administrative data 
systems, such as the Australian National Hospital Morbidity Collection, into their respective 
Charlson group. In addition, the widespread use of the Charlson groups for the development 
of risk-adjustment models for hospital mortality studies makes it clear that the groups within 
the Charlson index are the de-facto standard method for grouping complicating conditions 
both for studies of specific conditions, or  
broad-based measures.  

Although the Charlson index groups conditions into groups of increasing ‘severity’, and 
aggregates those groups into an interval score that can range from 1 to 16, most studies of 
hospital mortality have truncated the score. In an unpublished study of hospital mortality in 
South Australia in 2002 (Ben-Tovim 2002), the score was truncated at 5. In the Canadian 
study described above (CIHI 2007), it was capped at 2, and so on. An alternative to the 
identification of regression coefficients related to the score assigned to the comorbidity is to 
aggregate the comorbidites into their Charlson group, then insert the groups into the logistic 
regression, and generate a group-specific coefficient (Polanczyk et al. 2002). That was also the 
method used in the unpublished South Australian study (Ben-Tovim 2002). When used in 
that way, the coefficients cannot be applied to a different population of patients without 
testing for over-fitting. The Charlson index in its various guises continues to be developed as 
a valuable tool in risk adjustment.  
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2.6.7 Summary of risk adjustment and hospital mortality 
When studies of comparative hospital mortality are presented to clinicians, one of two 
stereotypical reactions often occurs. If the hospital or service involved scores ‘well’, then 
satisfaction is taken with the outcome. If the hospital or service scores ‘poorly’, then doubt is 
likely to be expressed about the data and method used, focusing on whether the method has 
adequately accounted for the ‘difficulty’ of the institution’s casemix. The discussion of risk 
adjustment in this section has been provided with this in mind. 

Some conclusions can be drawn from the sections above. Firstly, real and substantial 
differences can be found between hospitals in relation to in-hospital mortality. The 
differences are not affected greatly by whether measurement is restricted to deaths during 
hospital stays, though it is better to include deaths soon after discharge.  

Attempts to create a level playing field for inter-institutional comparisons have their 
problems. There are limits to the precision of existing risk-adjustment models. Models can be 
developed that have acceptable discriminatory power overall, but are poor predictors of 
individual outcomes. This is not simply a technical problem. As practising clinicians will 
acknowledge, their accuracy in predicting survival or death during any one hospital stay for 
an individual patient who is not clearly terminally ill is limited, even in the case of the most 
severe illness. Survival ‘against the odds’ is a driving force for much clinical effort, and there 
are countless patients and their families who have enjoyed extra years of life as a result of 
those efforts. The limits of statistical methods are the limits of our understanding of the 
nature of illness itself. 

It is also clear by now that the early concerns about the limitations of administrative data 
systems are unfounded. Contemporary administrative data systems—professionally 
extracted and coded, with a wide variety of primary and secondary diagnoses—are an 
acceptable source for further study of the causes of variation in hospital mortality, and there 
is little difference in terms of discriminatory power between models derived from them and 
models derived from clinical databases  
(e.g. Smith 1994). This is reassuring, because the cost and complexity of extracting clinical, or 
even simple laboratory, information on a large scale from existing record systems on a 
national scale in countries such as Australia are prohibitive. This is true even in countries 
such as the USA, where, as Birkmeyer et al. (2006: 417) put it in 2006: 

‘Although it is not clear whether our results would have differed if we had access to 
detailed clinical information for better risk adjustment, this question may be moot from a 
practical perspective. With the exception of cardiac surgery, clinical data for determining 
risk-adjusted mortality rates with other procedures are currently not on the horizon.’ 

Finally, however much we wish it, advanced statistical modelling will not reveal factors that 
are otherwise obscure. When a clinician complains that a risk-adjustment process is 
inadequate, or does not correspond with clinical experience, the challenge is to find a way to 
enable the clinician to articulate his or her concern in such a way that it is open to 
measurement. Until that happens, the only reasonable assumption from the work to date is 
that severity of illness—at least as measured by clinical databases or laboratory results—does 
not account for all of the differences in death rates between hospitals. 
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2.7 Inter hospital variation and random variation 
In Section 2.4.1, it was argued that V— variation in hospital mortality rates—would be made 
up from three components: VQ = systematic variations in factors that influence mortality 
outcomes, VC = variations due to the clinical, demographic and casemix differences between 
patients present at the point of arrival in hospital, and VR = random variations.  

With methods for the computation of VC established, the issue of random variation now has 
to be tackled.  

If mortality is to be used as an indicator of safety and quality, then, like all indicators, it has 
to be reliable and valid. In psychometric practice, reliability is examined before validity. A 
reliable indicator may not be valid, but an unreliable indicator cannot be valid as its values 
cannot be interpreted. 

The reliability and validity of indices of in-hospital mortality depend on the quality of 
measurement of relevant characteristics of hospital cases (e.g. number of diagnoses, vital 
status at the end of an episode of care). 

2.7.1 Measurement 
Although concerns have at times been expressed as to the accuracy of coding of diagnostic 
information within administrative data sets (Scott & Ward 2006), the extent of such 
disagreements in Australia at least are modest, and certainly appear to be no greater than 
found in the daily interactions between colleagues within the same team or discipline. Apart 
from diagnoses, the data elements in administrative data sets have generally been chosen 
because they are robust, straightforward to collect and enumerate and, in the case of the 
Australian National Hospital Morbidity Data collection, come with very explicit rules for 
their definition and tabulation. Coding audits constitute the test of inter-rater reliability 
relevant to assessing the utility of  
risk-adjusted measures of hospital mortality. Those audits commonly lead to no more than a 
small percentage of cases being re-coded: implying an acceptable level of  
inter-rater reliability (AIHW 2007).  

It must be noted that although the fact of death will be accurately recorded, it is likely that 
there can be differences in relation to the proximate cause of death, as reported at death 
certification (Scott & Ward 2006). Fortunately, hospital mortality measures do not make use 
of the aetiological factors reported in death certificates, so that is not an issue of relevance. 

2.7.2 Random and systematic variation 
From Nightingale onwards, variations in hospital mortality rates have been taken to indicate 
variations in the safety and quality of the care provided. If hospital mortality rates are subject 
to large amounts of random variation, then they are outside the control of the staff in the 
hospital. Labelling a hospital as unsafe, when its results at any one time could vary between 
those considered safe and those considered unsafe solely due to chance, would be 
unreasonable for the staff and cause undue concern among current and potential patients. 
The reliability of the measure is clearly of great importance. 
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Random variation is present in the observation of all phenomena, though that is minimal in 
relation to the fact of death. The issue here is not the fact of death; it is variations in the 
observed death rate. Because patients are not randomly assigned to hospitals, the test that is 
applied to any one hospital is: ‘does the observed mortality rate differ significantly from the 
rate that would have been expected if the patients had been treated in the ‘average’ hospital 
in the population of hospitals studied?’. Because inferences about hospitals are based on the 
size of the differences between the observed and expected mortality rates, the ‘test-retest’ 
question in relation to hospital mortality is whether the magnitude of differences remains 
similar when a hospital is studied again at a later time (assuming that the hospital’s casemix 
did not change materially).  

This question has been assessed in a number of ways: some more directly relevant than 
others.  

A small group of studies in the 1990s (reviewed in Thomas & Hofer 1998) were conducted 
with the stated aim of examining the role randomness played in explaining hospital death 
rates (Zalkind & Eastaugh 1997: Thomas & Hofer 1999). Those studies all used broadly 
similar strategies, though they varied in scale and method. They all took as their starting 
point the assumption that variations in hospital mortality were a consequence of poor care, 
with poor care being identified via adherence to process measures. Then pre-existing 
external sources of information were used to specify the mortality implications of poor care, 
and these external parameters were then used to test the extent to which mortality outcomes 
in specific data sets could be attributed to poor quality. Simulation techniques were used to 
test the strength of relationships between mortality and poor quality, with Monte Carlo 
simulation being used to create multiple runs of the simulation equations under conditions 
of variation of the specified model parameters.  

Because of the reliance of process measures as the measures used to infer poor quality, the 
studies were all on restricted ranges of diagnoses. The Zalkind (1997) study was entirely 
hypothetical, whereas Thomas and Hofer (1999) examined patients with CABG, AMI, stroke, 
pneumonia or congestive heart failure. 

A careful examination of the analyses makes it clear that all those studies were in fact 
assessing the sensitivity and specificity of hospital mortality rates as indicators of hospital 
quality, with adherence to processes being the ‘gold standard’ against which hospital 
mortality was being assessed. Considered in that context, hospital mortality had low 
specificity in that there was a considerable risk that a hospital with a varying mortality rate 
might be flagged as low quality even though its quality, as measured by process adherence, 
was acceptable or high. Monte Carlo simulation showed that the poor performance in terms 
of this criterion was mainly the consequence of random variation. 

Such studies are of interest, but they are of secondary importance here. They have cross-
sectional designs rather than longitudinal, and so cannot measure variation over time in the 
absolute and relative performance of hospitals. As will be discussed later, the realisation of 
the extent and seriousness of adverse events during hospital care and the scale of their 
mortality outcomes, as crystallised in reports such as ‘To err is human’ (Kohn et al. 2000), 
and the ‘Quality in Australian Health Care’ study (Wilson  
et al. 1995), have altered the landscape in hospital mortality studies, and challenged pre-
existing assumptions about how quality is identified and assessed. 
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Of more direct relevance are studies that look directly at test-retest or repeated measures 
issues. Marshall et al. (1998) described the development of a time series monitor of outcomes 
for patients undergoing CABG procedures in Veterans Affairs (VA) hospitals in the USA. 
Their concern was that monitoring the performance of  
VA hospitals by cross-sectional comparisons of performance would miss issues such as 
hospitals whose rates remained static although there was a general trend towards 
improvement, or hospitals whose results improved or deteriorated in a substantial way over 
time, despite the absolute mortality rates not being deviant enough to attract attention on 
cross-sectional study. 

Implicit in such a design is the assumption that mortality rates are sufficiently predictable 
and stable over time that variations from the usual patterns will stand out. The study 
examined 11 six-month periods. The risk-adjusted mortality rates for patients undergoing 
CABG in 30 out of 43 hospitals were stable over the whole period, four hospitals had 
significantly high ratios over the whole period, and one significantly low. There was some 
movement in the rates for the remaining eight hospitals. 

Birkmeyer and colleagues in the USA have been investigating the relationship between 
volumes of procedures performed, and subsequent mortality, for some time. As part of their 
work (Birkmeyer et al. 2006), they examined the value of historical mortality rates and 
procedure volume as predictors of subsequent performance on four high-risk surgical 
procedures (CABG, elective aortic aneurysm repair, oesophageal cancer resection, and 
pancreatic cancer resection).  

They accessed the Medicare and Medicaid records for all patients undergoing these 
procedures over the period 1994 to 1997. Risk adjustment was undertaken for each 
procedure using the information in the Medicare data file: namely age, sex, race, admission 
status, socioeconomic status (defined as mean Social Security Income for the postcode of 
residence), and comorbidities aggregated into Charlson Index scores. 

Morbidity rates in each hospital were then transformed using the t-statistic. The  
t-expected mortality is the difference between the observed and expected mortality, divided 
by the standard error of the expected mortality. This allows an adjustment for the variance 
due to small sample size, and tends to dampen the extreme mortality rates observed in 
hospitals with small case loads, moving them towards the mean. They then divided hospitals 
into quintiles of mortality for the period in question. Assignments to a quintile for the period 
1994 to 1997, along with procedure volumes, were used to predict mortality during the 
subsequent two year period 1998–1999. Predictions were per procedure, and historical 
mortality predicted subsequent mortality for CABG, AAA and pancreatic resections, but not 
oesophagectomy. Historical mortality predicted 54% of subsequent mortality in CABG 
(compared with hospital volume, which only predicted 9%). It predicted 35% of mortality in  
AAA repair, and 41% in pancreatic resection. The same analysis was undertaken for the 
periods 1996–1999, and 2000–2001, with similar results.  

Although not a conventional test-retest study, risk adjustment in these studies renders the 
populations similar to each other in relation to patient-level variability over time. The 
location of a hospital in a mortality quintile predicts its future location for the same 
procedure, implying that the measure—relative risk-adjusted hospital mortality—remains 
stable over time. If the differences between hospitals were solely a consequence of random 
variation, this would not be the case, and historical mortality could not predict subsequent 
mortality. 
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Finally, a study published recently has examined this directly (Heijink et al. 2008). Heijink 
and colleagues examined hospital mortality in all hospitals in Holland over the period 2003 
to 2005. Risk adjustment was by means of age, sex, primary diagnosis, length of stay and 
admission status. The analysis was confined to those primary diagnoses causing 80% of 
hospital deaths. The HSMR was calculated for each hospital on the Dutch National Medical 
Registration. Nine of the 101 registered hospitals were excluded because of insufficient 
registration of separation data. 

The aim of the study was to assess variation within hospitals over time and between 
hospitals in relation to a variety of organisational and environmental factors. Only the results 
in relation to variation within hospitals over time will be discussed at this point.  

A two-level multi-level model was constructed to look at time trends. The results showed 
that there was a significant overall decrease in HSMR over the period in question, and that 
most of the variation in HSMR was caused by variation between hospitals rather than 
variation within hospitals over time. 

Smith (Smith, 1994)—drawing on an earlier study (Smith et al. 1991) of Medicare data of over 
41,000 patients in 81 hospitals and other studies—used complex statistical reasoning to 
partition the variance in hospital mortality into the three components described earlier (VC = 
50%, VR = 15%, VQ = 35%). Although no subsequent analyses have confirmed his 
partitioning, it is possible to draw some overall conclusions on the fact and partitioning of 
variability of hospital mortality. 

First, it is clear that hospitals vary substantially in their mortality rates. Second, risk 
adjustment using the data elements in administrative data sets provides an acceptable level 
of discrimination in relation to hospital-level outcomes (though not, of course, prediction for 
individual cases). Third, after risk adjustment, the residual variations between hospitals have 
a substantial systematic element and the extent of random variation is not so great as to 
invalidate the use of hospital mortality as an indicator.  

Whatever the factors that cause hospitals to differ, they tend to persist over time. Thus, in a 
recent publication from the Canadian Institute for Health Information (CIHI 2007), the 
HSMR outcomes from a large number of named Canadian Hospitals were computed and 
tabulated for the three 1–year periods from 2004–2005 to 2006–2007. The HSMRs and the 
confidence limits for the in-hospital mortality of each hospital were reported.  

Using the simple expedient of saying that an HSMR that was above 100, accompanied by 
confidence limits that did not cross the 100, indicated a high-mortality hospital, and a 
hospital whose HSMR was below 100 and whose limits did not cross 100 indicated a low-
mortality hospital (and all others were intermediate): 12 hospitals were low for each of 3 
years, 36 were intermediate in each of 3 years, and 10 were high for the 3 years. Fourteen 
hospitals shifted between intermediate and low in one or more years, and twelve between 
intermediate and high. Only one hospital moved between all three levels in the 3–year 
period: and it went from being a high-mortality hospital to low, then intermediate.  

Once it is agreed that variation is a fact, that it tends to persist after risk adjustment, and that 
in the absence of intervention it tends to remain stable over time, it becomes meaningful to 
examine to what the variation may be attributed. 
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2.8 The relationship between variations in hospital 
mortality and other measures 
A modern general hospital is among the most complex of all human enterprises. Thousands 
of staff from a myriad of professional backgrounds—deploying varied and complex 
technologies, faced with patients whose combinations of principal and secondary diagnoses 
and other care needs are effectively infinite in number—make decisions whose implications 
are uncertain yet which can materially influence the very survival of the patients under their 
care. Is it not surprising then, that the literature on what it is that influences variations in 
hospital mortality rates is at times confusing and hard to follow. Some things, however, are 
fairly clear. 

2.8.1 Structural characteristics 
The structural characteristics of hospitals, including their staffing, their facilities, and 
possibly their role as teaching hospitals, are important but inconsistent predictors of  
in-hospital mortality (Silber et al. 1995).  

For instance, Krakauer et al. (1992), in a broad-based study of mortality of Medicare patients 
treated in 84 hospitals across the USA, found that hospitals with a higher proportion of 
registered nurses or board-certified physicians, or with a greater level of access to high-
technology equipment, had lower risk-adjusted mortality rates. 

New York City has municipal public acute-care hospitals, and a large number of voluntary 
(private) hospitals. Shapiro et al. (1994) studied mortality rates for AMI, pneumonia, stroke, 
head trauma and hip repair in both municipal and voluntary hospitals. After risk adjustment 
using a wide range of secondary diagnoses, they found that there was increased mortality in 
the municipal hospitals for stroke and head trauma. 

In an early study from New South Wales, Corben et al. (1994) looked at the variation in risk-
adjusted mortality rates between different kinds of hospitals in New South Wales. The 
analysis showed that there were differences in mortality outcomes between hospital types 
(e.g. Principal Referral, District Hospitals) but the differences were not tested statistically. 

Birkmeyer is a consultant to the Leapfrog Group in the USA, which promotes evidence-
based purchasing amongst funders and purchasers of health care. In a series of large scale 
studies (e.g. Birkmeyer et al. 2002), Birkmeyer and colleagues have explored the relationship 
between volumes of surgical cases treated in hospitals, and hospital mortality, They 
demonstrated that, within the USA hospitals studied, there is a relationship between high 
volumes of certain high-risk cases treated and lower levels of hospital mortality. 

In the study described previously, Jarman et al. (1999) looked at mortality rates for hospitals 
throughout England, and found that the best predictors of variations in hospital mortality 
were the numbers of hospital doctors per 100 beds and the numbers of general practitioners 
(GPs) per 100,000 population of the population served by hospitals.  

In the recent large scale study of Dutch hospitals, Heijink et al. (2008) studied the 
relationship between variations in HSMR and a wide variety of structural characteristics of 
hospitals throughout Holland. The study used a sophisticated  
two-level multi-level random effects model to assess within hospital variation over time 
(previously discussed) and the influence of structural and input factors on  
inter-hospital variation. In the final analysis, factors such as socioeconomic status of the 
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patients treated, numbers of nurses and doctors per bed and bed occupancy rate did not 
have an independent influence on mortality, though numbers of GPs per  
10,000 occupants, and hospital type (teaching or non-teaching) did.  

It is difficult to interpret the significance of the influence of community-based medical care in 
the Jarman and Heijink studies. Although it may be inferred that a relative lack of GPs might 
lead to patients who arrive at hospitals in a more severely ill state, that relationship has not 
been demonstrated empirically. 

2.8.2 Performance, safety, quality 

Performance 
Since the publication of the HCFA studies in the 1980s, there has been a continuing interest 
in the search for measures of hospital performance. This has been fuelled by two major 
concerns. First, as health care has become increasingly expensive— particularly in the USA, 
but elsewhere also—but without clear evidence of the benefits of increased expenditure, 
efforts have been made to evaluate the performance of hospitals, to improve them; second, to 
provide guidance both to patients and to insurers or other purchasing groups, such as 
HMOs.  

Safety 
The Compact Oxford English Dictionary defines safe as ‘protected from danger or risk; not 
causing or leading to harm or injury, and; (of a place) affording security or protection’. So, 
hospitals with relatively higher mortality rates are less safe overall than hospitals with lower 
mortality rates. That is self evident; when, after risk adjustment and allowing for random 
variation, mortality rates differ between hospitals, those hospitals with higher mortality rates 
afford their patients less security or protection than those with lower rates.  

But this only applies at the hospital population level; and it is an increase in relative risk. It is 
quite inappropriate to deduce a conclusion for an individual on the basis of aggregate or 
population data: this is known as the ecological fallacy.  Its force may be gathered from 
trying to deduce Sir Donald Bradman’s batting average from the average for the Australian 
teams that he played in. The characteristics of a group may not be shared equally by all its 
members and, in population terms, the risks of the population at a whole are not equally 
shared by all its members. A patient with a particular risk profile may still be better off in a 
high-mortality hospital (Heijink et al. 2008), if that hospital is used to dealing with his or her 
condition. Furthermore, there is no a priori reason to assume that a hospital with a low-risk 
profile and a low-risk casemix would continue with that profile if it was faced with a higher 
risk case load. 

Quality 
What characterises quality in health care is not easy to pin down, and the relationship 
between in-hospital mortality and hospital quality measures is not clear. A dictionary 
definition of quality is that it is an essential or distinguishing characteristic. In common 
usage, the term tends to imply positive characteristics. What then, are the essential or 
distinguishing characteristics of high-quality health care? 
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Campbell et al. (2000) made a useful distinction between generic and disaggregated 
definitions of quality. A number of generic definitions of quality from fields outside health 
care base their definition on the viewpoint that a quality product or service is one that meets 
the requirements of those who use it. Thus a quality product or service is one that is fit for 
purpose or fit for use. Montgomery (2001), arguing from a statistical quality control 
viewpoint, defined quality as being inversely proportional to unwanted or harmful 
variability.  

Within health care, the Institute of Medicine defined quality as the ‘degree to which health 
services for individuals and populations increase the likelihood of desired health outcomes 
and are consistent with current professional knowledge’ (Lohr 1991). Whatever the appeal of 
the generic definitions put forward by such bodies, they are hard to operationalise, and 
although disaggregating quality into a set of component parts emphases its complexity and 
multidimensional nature, the components are generally easier to measure. 

A characteristic and much quoted multidimensional model is that of Maxwell (1984) who 
defined quality in relation to access to services, relevance to the needs of the whole 
community, effectiveness, equity, social acceptability, and efficiency and economy. That kind 
of multidimensional view is best understood in relation to a health service as a whole, rather 
than to an individual encounter within that service.  

Donabedian has been the most influential voice in relation to quality at the level of the 
individual encounter. As he says in his landmark article ‘Evaluating the quality of medical 
care’ (Donabedian 1966: 163), he ‘remained, by and large, in the familiar territory of care 
provided by physicians and has avoided incursions into other types of health care.’  

Donabedian proposed that the quality of medical care be assessed in relation to three 
components—structure, process and outcome—of which structure has been dealt with 
above. Donabedian (1966: 186) recognised that outcomes validate other measures (‘the 
validity of all other phenomena as indicators of quality depends, ultimately, on the 
relationship between these phenomena and the achievement of health and satisfaction’) but 
introduced into common parlance the notion of measures of process as indicators of quality.  

Process quality relates to an assessment of the interactions between clinicians and patients, 
and may be considered to have two elements (Schuster et al. 1998): technical process quality 
and care in relation to professional standards. Technical medical quality was simply 
described by Donabedian (1966) as ‘whether what is known to be ‘good’ medical care has 
been applied’. By that he meant the skilful application of clinical care in the broad sense. It is 
clear that holistic assessments of that kind can only be made by judges who are themselves 
skilled: examining a range of information collected during an encounter. Such a strategy has 
come to be termed an implicit evaluation of care.  

Broad-based evaluations can be distinguished from process quality as measured by process 
indicators. There, an assessment is made of the extent to which a specific process of care has 
been performed, defined either by reference to the scientific literature, or an expert panel, 
and deemed to represent appropriate care for a particular condition or set of circumstances. 
Most feasible process measures are usually indicators for a very specific element of the care 
process rather than comprehensive measures of how care is actually delivered (Rubin et al. 
2001)—the hope being that the part is indicative of the larger whole.  

It is the link between measured process and hospital mortality outcome that is most 
problematic. The underlying dilemma is clear.  
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Process measures provide direct feedback to professionals about measurable changes of 
practice; for example, ‘the percentage of eligible cases of patients with AMI who leave 
hospital with evidence-based treatments that will reduce the risk of recurrence’ is a measure 
that provides information that can be acted on.  

But the link between specific process steps and overall hospital mortality is less clear because 
many of the factors that might affect mortality are outside the direct control of the 
practitioner. As Donabedian (1966: 181) puts it ‘Care can be good in many of its parts and be 
disastrously inadequate in the aggregate due to a vital error in one component’. 
Nevertheless, for the patient who is the subject of treatment, the process steps in his or her 
care are of little direct interest—what interests the patient is the outcome and, most 
interesting of all, the question of survival. 

So is survival the gold standard of quality, and are measures that do not correlate with 
mortality poor measures of quality? Or is adherence to process standards the essence of 
quality, and measures that do not relate to variations in process adherence inappropriate 
measures of quality? Although this is clearly a matter of viewpoint, it is not simply a matter 
of semantics.  

Take the following contrasting views. The Hospital Quality Alliance is a national public 
reporting program in the USA—initiated by the US Department of Health and Human 
Services—collecting data on a set of process measures for heart attack, heart failure, 
pneumonia and surgical site infection prevention. As Jha et al. (2007: 1105) point out, the 
indicators were developed with a broad consensus from experts, and from the research 
literature, but their performance ‘in the real world in identifying hospitals with better 
outcomes, such as lower risk-adjusted mortality across a number of clinical conditions is 
unknown’. Only if this relationship is confirmed can the measures be useful for quality 
improvement programs  

However, in a review of a series of studies of the relationship between the Health Quality 
Alliance-supported process measures and hospital mortality, Shih and Schoenbaum (2007) 
found only a modest relationship between the measures and  
short-term mortality. As they say, equivocal results of this kind lead to criticism that such 
measures have only a limited value as tools for informing consumers about quality of care, 
or guiding payers seeking value in pay-for-performance programs (Horn 2006). Werner and 
Bradlow (2006) were similarly concerned that their findings of only a modest relationship 
between performance on process measures and  
risk-adjusted mortality rates—in a large scale study of Health Quality Alliance—supported 
process measures and mortality outcomes—would be inferred as meaning that the ability of 
performance measures to detect clinically meaningful differences across hospitals would be 
questionable. 

A contrary view is exemplified in a recent comprehensive review of the relationship between 
quality of care and risk-adjusted mortality by Pitches et al. (2007: 1). The reviewers begin by 
partitioning mortality into patient casemix factors, random variation and a residual 
unexplained mortality (described as systematic variation above). The authors state that this 
unexplained component may ‘implicate quality of care’ and lead naturally to the ranking [in 
league tables] of hospitals with an implied correlation with quality of care. They go on to 
explicitly equate quality of care with adherence to existing evidence-based standards of 
clinical care, and seek to determine if hospitals with higher risk-adjusted mortality rates, 
provide poorer quality of care so defined. So, in this view, adherence to evidence-based 
standards of clinical care is the gold standard of quality against which mortality is assessed. 
This position has been  
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re-stated particularly clearly by Shojania & Forester (2008: 153) who state that ’for the 
hospital standardised mortality ratio to represent a valid performance measure, it must 
correlate with accepted measures of quality’. 

With these basic issues in mind, it is possible to begin to look for underlying patterns in the 
extensive literature that has accumulated in this area. This is a partial review only: more 
comprehensive analyses can be found in Iezzoni (1997a), Thomas and Hofer (1998), and 
Pitches et al. (2007).  

Firstly, there are those studies that have gone from outcome back to process: that is, risk-
adjusted mortality rates have been calculated, then processes within contrasting groups of 
hospitals have been examined. In an early study, Knaus et al. (1986) ranked intensive care 
units (ICUs) on mortality outcomes using the APACHE 11, and then undertook management 
audits of the units. The hospital with the lowest mortality ratio had a number of structural 
characteristics thought to be associated with good ICU care (e.g. 24 hour cover by a unit 
physician) and these were in contrast to the worst performing unit, where poor 
communication between the unit physician and the nursing staff was also noted. The small 
numbers and the very subjective aspects of the management audit make it hard to draw 
conclusions from this study. 

The issue of small patient numbers is also found in a much quoted study by DuBois  
et al. (1987). In a rather complex design, they first created a crude risk adjustment that made 
no attempt to take comorbidities into account, and used that to rank hospitals in a provider-
owned chain. They then studied six of the high-mortality outliers, and six of the low 
mortality outliers. Case records for a total of 378 patients with AMI, stroke or pneumonia 
were studied. A structured review against explicit criteria (generated by a panel of experts) 
was conducted by one of the researchers who was a physician. That physician also dictated 
case summaries for the 182 patients who died during their hospitalisations. 

The extracted data was used for two purposes: firstly, a severity based analysis was 
conducted, allowing for more sensitive risk adjustment for each primary diagnosis. The 
performance against the explicit criteria was also reviewed and found not to vary between 
the high and low performing hospitals. The case summaries were then reviewed by external 
assessors, who looked at the overall care provided and rated the deaths as preventable or not 
preventable. After risk adjustment, the high-mortality hospitals were rated as having a 
greater proportion of preventable deaths for pneumonia and stroke, but not AMI. 

The study is described in some detail because it reveals the complexity of the methods 
required to undertake an implicit review. Also noteworthy was that there was only modest 
inter-rater reliability between the assessors in relation to the outcome of implicit review. 

Similar methods were then used in studies by Best and Cowper (1994), Goldman and 
Thomas (1994) and Gibbs et al. (2001). In each case, the potential preventability of deaths of 
patients who had died in hospitals with high (Goldman and Thomas 1994) or high and low 
mortality rates, (Gibbs et al. 2001) was assessed by independent assessors. Although in both 
cases higher overall mortality was associated with deaths that were deemed more likely to 
have been preventable, the associations were generally modest. 

Park et al. (1990) in a RAND Corporation study, used HCFA data to identify high outlier 
hospitals, and compared a representative sample of over 2000 patients with either congestive 
cardiac failure or AMI. Quality of care was examined by a detailed case note review, in 
which quality of care was assessed in relation to an explicit set of processes, though the 
processes assessed were quite broad, and included physician and nurse examination, 
diagnostic tests and use of therapeutic and intensive services. Although, at the patient level, 
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higher severity and poorer quality of care were associated with higher mortality, no hospital-
level effect could be detected  
(a demonstration of the ecological fallacy). Interestingly, simulation was used to assess the 
extent to which variations in hospital mortality could be attributed to random variation. 
Although that proportion was substantial, the non-random variation was statistically 
significant and clinically important. 

A quite different approach that made it possible to overcome the problems of small sample 
sizes, but traded size for credibility, made use of the fact that files of patients for whom USA 
hospitals claimed re-imbursements were independently assessed by peer review 
organisations in each state (Hartz et al. 1993). The Peer Review Organisations review about 
one in four records. Nurse reviewers look for a specified set of quality-of-care performance 
problems (quite diverse and widely drawn) and, once a problem has been identified, a 
physician review confirms the problem or not.  

Although there were modest, but statistically significant, correlations between problem rates 
as specified by the Peer Review Organisations and risk-adjusted hospital mortality rates, at 
the state level, there were major differences between the Peer Review Organisations in each 
state. Hence, the findings of Hartz et al. (1993) and Thomas et al. (1993), which also used Peer 
Review Organisation assessments, are hard to interpret. 

Finally, there are a number of other studies (reviewed in detail by Pitches et al. (2007)) that 
use explicit review to assess compliance with process measures for one or more specific 
conditions in patients treated in groups of hospitals, and assess the association of process 
measure compliance with risk-adjusted hospital mortality for those conditions. The 
outcomes of these studies are in line with the outcomes of the Health Quality Alliance 
process measures. 

The literature reviewed in this section demonstrates that the relationship between process 
measures and mortality outcomes is inconsistent. Further work in this area should continue 
to be monitored. 

2.8.3 Studies aimed at changing hospital mortality rates 
The recognition in recent years of the pervasive nature of adverse events during hospital 
care, and their mortality and morbidity implications, has begun to change the context of 
discussions about hospital mortality.  

As the previous section demonstrates, for many years the concentration was on hospital 
mortality as an indicator of quality, when quality was associated with the performance of 
clinical practitioners in relation to what might broadly be termed evidence-based care. Do 
practitioners do what is thought to be necessary, or at least practise in conformity with the 
best evidence for what ought to be done? In that context, a good quality hospital is one that 
provides the right care. But as Donabedian (1966: 182) points out, the relation between 
structure, process and outcomes is not simple: 

 ‘In healthcare, each event is an end to the one that comes before it and a necessary 
condition to the one that follows. This indicates that the means–ends relationship 
between each adjacent pair requires validation in any chain of hypothetical or real 
events. This is … a laborious process. More commonly… the intervening links are 
ignored. The result is that causal inferences become attenuated in proportion to the 
distance separating the two events on the chain.’  
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There are very many steps between a specific process measure (giving aspirin on arrival in 
hospital for patients with AMI) and overall in-hospital mortality. And studies are now 
emerging that describe hospitals’ efforts to reduce overall mortality rates directly, rather 
than looking solely at specific process steps.  

In 2000, the Walsall Hospital NHS trust had a HSMR of 130: the highest of all acute hospitals 
in England. In response, seven clinical governance groups were formed to implement 
changes across the whole range of clinical disease areas, together with a wide variety of 
management areas including bed management, information services, discharge liaison, 
integrated care pathway development, and many others. By the end of 2004, the HSMR had 
dropped to 92.8 (Jarman et al. 2005). 

It could be argued that what was accomplished here was no more than statistical regression 
to the mean, or a more causal effect resulting from public scrutiny causing a poorly 
performing hospital to get back into line (akin to the ‘Hawthorne effect’). Any change, no 
matter what its impetus, would have had the same outcome. 

The case study of the Bradford Teaching Hospitals Trust (Wright et al. 2006) is particularly 
interesting in this light. The Trust is a large (1200 bed) acute service which, in 2002, was a 
low mortality Trust in terms of HSMR. Nevertheless, in 2002 the Trust chose to focus on 
hospital mortality, with a commitment to eliminate all unnecessary hospital deaths. The 
program of work that followed was very diverse. Following a review of a consecutive series 
of hospital deaths, a high prevalence of sub-optimal clinical observations, medication errors 
and hospital infections was noted amongst the patients that died. A wide variety of 
corrective actions were initiated in all relevant areas. Also, a monthly monitoring program 
for hospital deaths using a statistical control chart for hospital mortality was begun. 
(Statistical control charts are discussed further on in this report.)  

In Bradford, the effect of the mortality reduction program was to significantly reduce the 
hospital HSMR from 94.6 at the start of the program to 77.5 three years later. The Bradford 
Trust began its work after enrolling in an Institute of Healthcare program: Improvement 
Partnership for Hospitals. Gilligan and Walters (2008) described the experiences of the East 
Lancashire Hospitals Trust (Royal Blackburn Hospital) following enrolment in that same 
program. Their focus became improving the flow of patients through the hospital by a 
combination of activities including changes to medication charts and physician rounds, 
redistribution of bed stock and the introduction of a critical-care outreach service, plus 
intensive monitoring of outcomes using control charts. The Trust was never a high-mortality 
outlier—though its HSMR was above the national average—but over the period of the study, 
the HSMR declined substantially. 

The large-scale 100,000 Lives Campaign initiated by the Institute for Healthcare 
Improvement is aimed directly at hospital mortality: reducing mortality by a series of broad 
based improvement strategies, rather than through the medium of adherence to narrow-
focused process measures for specific conditions. The strategy is not without its critics 
(Auerbach et al. 2007), but is defended indirectly in Berwick (2008). 

2.8.4 Summary 
The performance of hospitals will continue to be scrutinised, and measures will continue to 
be devised to open up the historically rather hidden world of hospital outcomes to external 
inspection. Mortality is one such measure, and although its status as a measure of safety 
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seems secure, its role in specifying hospital quality is subject to the difficulties and 
ambiguities inherent in the concept of quality.  

Feasible and reliably measurable process measures tend to be of very specific elements of 
care, and there are likely to be very many unmeasured steps between such process elements 
and the survival or death of a group of patients—as the mortality reduction programs 
described above infer. Furthermore, there is a logical fallacy at the heart of referring back 
from mortality to quality when (and if) quality is defined in relation to performance levels on 
a set of specific process measures. If quality is synonymous with p, and p�m (mortality), 
that does not necessarily mean that p�m, because m is not identical to p. All cherries are 
red, and all cherries are fruit, but this does not mean that all red fruit are cherries.  

Another way of looking at this is the fallacy of composition. The fallacy of composition is 
committed when a conclusion is drawn about a whole, based on the features of its 
constituent parts, when there is no justification for drawing this inference. For example, 
every player on the team is a superstar, so the team is a great team. This is not necessarily so, 
because the superstars will not necessarily play together well, and so could form a very weak 
team. Teamwork is a quality of interaction and not a matter of simple addition. Similarly, in 
a hospital, individual staff may perform specific process measures with great accuracy, but 
modern health care depends as much on teamwork as individual competence, and the 
health-care team as a whole may perform poorly (Lemieux-Charles & McGuire 2006), and so 
increase mortality risk, despite the team being made up from conscientious and caring 
practitioners.  

2.9 Presentation of information about in-hospital 
mortality 

2.9.1 Methods of presentation 
Variations in hospital mortality rates are analysed and disseminated in an effort to influence 
the recipients to look further at health-care practice. Thus the mode of presentation of the 
results of analyses of mortality rates is of considerable interest. 

Goldstein and Spiegelhalter (1996) have provided a review of issues in this area. Drawing on 
examples from education and health care, they make the important point that comparisons 
must take context into account. Risk takes account of patient characteristics at entry into a 
hospital, in the same way that comparisons of schools performances should take account of 
the status of the children on arrival at a school. Goldstein and Spiegelhalter (1996) further 
argue that the need to contextualise does not stop at the institutional level, but needs to be 
considered at state and national levels. 

So, accepting that simple comparisons of mortality rates that are not risk adjusted will almost 
always be confusing, there are only a small number of practical alternatives for presenting 
the information. 

As previously described, risk adjustment of hospital mortality always involves a comparison 
between observed and expected mortality rates for a set of institutions or services. Although 
a number of different ways of generating indices from this comparison have emerged over 
the years (starting, in Australia, with an interesting early paper by Duckett & Kristofferson 
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1978), the HSMR has emerged as the standard in this area, and so is the index of hospital 
mortality discussed further. 

Institutional HSMRs can simply be listed. But any single HSMR needs to be accompanied by 
a measure of the uncertainty of the value. The conventional method of doing that in scientific 
biomedical practice is to calculate the confidence intervals around each HSMR, usually using 
95% confidence limits (e.g. CIHI 2007). The 95% confidence limits represent the range within 
which a particular parameter will be found 95% of the time on repeat testing of a population, 
so the width of the confidence limit gives an indication of the uncertainty or precision of the 
parameter. Wide confidence limits commonly occur when sample sizes are small.  

The Canadian National Study of HSMRs, referred to above, simply listed each participating 
institution, together with its HSMR and the confidence limits. It made no explicit inter-
institutional comparisons: leaving that to the reader. 

League tables 
League tables in which hospitals are ranked in relation to their particular HSMRs, are an 
explicit method of providing inter-institutional comparisons. The Dr Foster group in the UK 
has provided several non-peer-reviewed reports in which hospital are ranked according to 
their HSMRs.  

Typically, most hospitals in a country have HSMR values that are quite close to one another, 
especially after adjustment for casemix. League tables tend to encourage unwarranted 
emphasis on small and unimportant differences in the rates, because they can translate into 
large differences in the ranking of hospitals with similar rates.   

League tables are improved by the addition of confidence intervals. But no matter how much 
effort is put into explaining uncertainty and variation, it is hard not to assume that being 
24th in a table of institutions ranked from 1 to 100 really means that the institution in 
question is superior to the 25th institution, and much superior to the 35th, even if all of those 
institutions have overlapping confidence intervals and cannot be said to differ significantly. 
So, whatever their attraction, from a statistical and epidemiological viewpoint the 
presentation of HSMRs in a simple league table format is hard to support. 

Caterpillar plots 
Another method is to present HSMRs (Goldstein and Spiegelhalter 1996) in the form 
colloquially known as ‘caterpillar plots’, in which the HSMRs and their confidence intervals 
are represented as a graphical plot, with individual institutions ranked by HSMR along the 
x-axis and the HSMR values shown on the y-axis.  

The two caterpillar plots below (Figure 2 and 3) are included here to illustrate this type of 
presentation. Each of the plots summarises data for one peer group of hospitals. The analysis 
underlying these plots has applied the same adjustment model to both peer groups (rather 
than analysing each group separately). Hence, it is computationally valid to compare the 
HSMR values in each of these plots. The values for hospitals in the A12 group are spread 
fairly equally above and below 100 (Figure 2). In contrast, the values for B1 hospitals are 
mainly below 100 (Figure 3). However, the interpretation of this difference between peer 
groups is complicated by their different casemixes. Adjustment for casemix based on data 
available in administrative data allows for part, but not all, of the difference. An apparently 

                                                      
2 See Table 2 for information on the types of hospitals included in the peer groups. 
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low-risk group of hospitals will only be low risk for their casemix, not the casemix of larger 
hospitals. 

The extent to which low-risk populations, as well as low-risk hospitals, provide an important 
opportunity for analysis is discussed in Coory and Scott (2007). 

The examples of caterpillar plots presented in this section are typical of those in the 
literature. There may be potential to improve the performance of this type of plot as a 
graphical method to convey information about in-hospital mortality. We present and discuss 
some variations in Appendix 4. 
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 Figure 2: Caterpillar plot of variation in point estimates in HSMR for peer group A1  
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Figure 3: Caterpillar plot of variation in point estimates in HSMR for peer group B1  

 

The obvious question is ‘when is a difference between institutions important?’ When the 
lower confidence limit of the estimate for any an institution is above the population average 
of 100, or the upper confidence limit is below 100, then that institution differs statistically 
from the population average. When a HSMR is so deviant that the institution not only fulfils 
the above criterion but is say 15% above or below the average, some analysts would declare 
the institution to be an outlier. Some would set even more rigorous criteria against which to 
assess outlier status and some would not set an outlier standard at all, but would just 
identify institutions at extremes. There is no absolute standard here. 

It is also the case that when the confidence intervals of two institutions do not overlap, they 
are deemed to differ to a statistically significant extent from each other, and that is helpful 
when undertaking inter-institutional comparisons for sub-samples of institutions that appear 
at very low (or very high) risk overall—at least in relation to HSMR. 

The results of the analysis of the Australian data sets are presented later in the form of a 
series of caterpillar plots, and their utility can be gauged from those presentations. 

Funnel plots 
A relatively recent innovation in the area of the analysis and presentation of HSMRs and 
other hospital performance indicators is the use of funnel plots, which were extensively 
developed by the Medical Research Council Biostatistics Unit in Cambridge in the UK 
(Spiegelhalter 2002: 2005) and are now coming to be seen as potentially preferable to 
caterpillar plots (e.g. Mohammed & Deeks 2008).  
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In the context of institutional comparisons, a funnel plot is an extension of a Shewart chart, 
or a statistical control chart. It is a method for detecting when a particular institutional 
outcome on a parameter, such as the HSMR, is so extreme as to constitute a potential case of 
‘special-cause’ variation. This means that the variation is so great that it is outside the 
bounds of the underlying, or common, cause variability that is present in the usual outcomes 
of the parameter in question. When a control chart ‘signals’ special-cause variation, an 
investigation into potential causes should follow.  

The method of computation of funnel plots is quite complex, although the results are 
presented in an easy to assimilate graphic. A relatively straightforward description is 
provided by the Dr Foster group in a recent non-peer reviewed (Dr Foster Intelligence 2007). 

‘Funnel plots (or control charts) are a graphical method used to assess variation in data 
and are used to compare different trusts over a single time period. These plots (HSMR 
funnel plots) show the position of each trust’s HSMR. Control limits form a ‘funnel’ 
around the benchmark and reflect the expected variation in the data.  
[The wide base of the funnel demonstrates that as the number of separations involved 
fall, the size of the expected variation increases because the measure is less precise]. 

Each chart has five lines: 

• a centre line, drawn at the mean (the national average RR=100) 

• an upper warning line (upper 95% control limit)  

• an upper control limit (drawn three standard deviations above the centre  
line-upper 99.8% control limit) 

• a lower warning line (lower 95% control limit) 

• a lower control limit (drawn three standard deviations below the centre  
line–lower 99.8% control limit). 

Data points falling within the control limits are consistent with random or chance variation 
and are said to display “common-cause” variation. For data points falling outside the control 
limits, chance is an unlikely explanation, and hence they are said to display “special-cause” 
variation.’ 

Further discussion of methods of presentation is delayed until after the results of the 
Australian study are provided. 

2.9.2 Public or private dissemination of mortality outcomes 
There has been lengthy discussion over the years as to the legitimacy of public reporting of 
mortality data, in comparison to dissemination solely to the institutions themselves. The 
issue will not be discussed at length here for several reasons. 

First, public dissemination of performance indicators is an area that has been comprehensive 
reviewed on a number of occasions, and there is little to add to recent reviews (e.g. Fung et 
al. 2008; Hibbard et al. 2005). 

Second, the overall results are fairly clear. Public reporting has, at best, a modest impact on 
the public at large, but it has a more definite impact on providers of care: tending to increase 
improvement activities of a variety of kinds. It is not without its hazards however (Hibbard 
et al. 2005). 
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Third, public reporting of mortality, as well as many other outcomes, is already so 
widespread as to be the norm in the USA, the United Kingdom and Canada, and in the UK 
will become increasingly so if the reforms recently advocated by Lord Darzi are enacted. In 
Australia, the Queensland Measured Quality reports, first produced in 2004 (Queensland 
Health 2004) provide very detailed mortality and other information about the hospitals in 
Queensland, and the reports have been elaborated in various ways since then. 

Finally, there will always be a necessary tension between the desire of establishments to 
maintain a good reputation and a public right to know. Media reports based on publicly 
available information have not always presented a completely accurate, or necessarily fair, 
representation of institutional or even personal outcomes. Public reporting does, however, 
guard against a tendency to withdraw support from analyses that may be seen as a source of 
embarrassment or distress—even if they are accurate—but it also places an obligation on the 
reporter to stringently guard against bias and misrepresentation. 

2.9.3 Future developments of note 
As well as providing a review of existing work, we have also been asked to comment briefly 
on any noteworthy trends in data gathering or analyses. We would say that the two most 
promising developments that will be implemented in the near future are the decision to 
require national coding of ‘present on admission’ indicators for all secondary conditions in 
the Australian National Hospital Morbidity set, and the wider application of data linkage. 
Some methodological developments also hold promise. 

Present on admission indicators 
One of the challenges for risk adjustment of performance indicators is a health-care version 
of the moral hazard problem. Coders are required to code complicating or comorbid 
conditions, irrespective of whether they were present at admission or occurred after 
admission. Some of those secondary conditions may have been the result of problems that 
occurred as a result of sub-optimal care. To risk adjust for them is to provide an allowance 
for poor-quality care rather than to reveal it by comparison of outcomes. For example, 
patient X had a presenting problem of severity Y, and was at low risk of death; having had a 
series of falls and a surgical site infection, he is now ranked as a high-risk patient, and his 
death is partially discounted for that reason.  

One way to capture this in hospital data is to attempt to record which conditions were 
present on admission. ‘Present on admission’ codes require a coder to judge whether a 
secondary condition was, or was not, present on admission, and are mandatory for 
Australian public hospital-coded separation data from the beginning of financial year 2008–
09. Present on admission coding has been practised for some years in California, and a recent 
study by Glance et al. (2008) demonstrates that present on admission coding is likely to 
considerably enhance the precision of mortality measures. Present on admission coding 
(known as C-codes in Victoria) has been in place in Victoria for some time, and a study by 
Ehsani et al. (2006) has shown that it is similarly informative there.  

Data linkage 
A second useful development is the increasing availability of data linkage. Two forms of 
linkage are relevant. The first is linkage within hospital morbidity data. Some people—
particularly those with serious and persisting conditions—are likely to experience more than 
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one episode of in-hospital care within the period covered by a study of in-hospital morbidity. 
Hospital inpatient administrative data files have generally been organised in a way that 
includes a record for each of these ‘separations’, but does not provide a good basis for 
grouping together the set of records referring to a particular person or reason for admission. 
Without this form of linkage, it is not possible to be sure whether a person whose episode of 
hospital care ended with transfer to another hospital, or with a ‘statistical type change’, died 
during the next episode of inpatient care. Even a person who separates with discharge home 
might have been re-admitted soon after, with the possibility of fatal outcome of that episode.  

The second role of data linkage relevant to this type of work is linkage between hospital 
records and death registers (or the National Death Index). This is necessary to enable studies 
that include deaths soon after discharge.  

Health data linkage systems also have potential to be used to assess individual health status 
over time. Such information might be found to improve risk adjustment.  

Developments that enable such linkage are well-established in some parts of Australia 
(notably Western Australia and New South Wales) and are being put in place elsewhere (e.g. 
South Australia), but there is not yet a routine capability to enable the necessary linkage at 
national level.  

Analytical methods 
From a methodological point of view, the issue of the development of Bayesian regression 
models for use in large scale mortality studies (e.g. Austin 2008) is of interest, but will 
require further study. The approach has potential for analysis of smaller hospitals. Bayesian 
techniques have a number of adherents in the field of performance measurement, but the 
techniques can be complex and are not without controversy, and will require quite detailed 
assessment and testing before their strengths and weaknesses can be assessed in this context 
(Paul Aylin personal communication, 2008). Nevertheless, this approach is sufficiently 
promising to warrant exploratory use and further development.  

Further developments in statistical process control methods for immediate monitoring of 
mortality and other performance measures are also clearly an area of great interest however 
(Duckett et al. 2007) 

2.10 Conclusions 
In 2006, Scobie et al. (2006)— drawing on the work of the National Performance Committee 
(NHPC 2004)—provided a useful set of criteria against which to assess the potential utility of 
a candidate health performance indicator. Those criteria can be used to assess variations in 
hospital mortality as a candidate indicator of hospital performance. 

Scobie et al. (2006) stated that an indicator should: 

1. Be worth measuring—it should represent an important and salient aspect of the 
performance of the health system. It is hard to argue against variations in hospital 
mortality on those grounds. 

2. Be measurable for diverse populations—the measure should be valid and reliable for 
general populations and the diverse populations in Australia. Variations in hospital 
mortality rates are relevant to all populations studied, and are reliably reported. 
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3. Be understood by people who need to act. The fact of variations in mortality is readily 
and immediately understood. The remedial actions are less clear. 

4. Galvanise action—The indicators are of a nature that action can be taken at the 
national, state, local or community level by diverse groups of individuals. Once the 
fact of variations in mortality are acknowledged, then actions take on some urgency, 
though, again, this is at an early stage and the necessary roles of the various levels in the 
health system are not yet clear. 

5. Be relevant to policy and practice. Although the policies and practices that will directly 
focus on   mortality reduction are yet to be generally agreed, the speed with which 
institutions have taken up the creation of medical emergency teams as a mortality 
reduction measure indicates that remedial actions can be developed and implemented 
on a wide scale. 

6. Reflect results of actions when measured over time. The studies described earlier 
demonstrate that. 

7. Be feasible to collect over time. This is clearly possible. 

Variations in hospital mortality appear to fulfil all the necessary criteria to qualify as a 
performance measure. The more pressing question is ‘how they should be used?’  

The uncertainty surrounding the relationship between variations in hospital mortality and 
other measures of hospital structure and process mean that, in our view, variations in 
hospital mortality should be viewed as screening tools, rather than being assumed to be 
definitively diagnostic of poor quality. A screening tool is a signalling device. It is intended 
to signal that a problem may exist and that further detailed investigation is required.  

With a screening tool, some lack of precision is accepted, because being too cautious in 
sounding a warning risks ignoring a problem in its early stages, when it may be more open 
to change.  So, because of the uncertainty in the interpretation of mortality rates, it is 
inappropriate to use variations in hospital mortality to assert with confidence that a high-
mortality hospital provides poor-quality care. That is a premature rush to judgment. High 
relative mortality should be seen as a prompt to further detailed investigation. The issues 
were well summed up by Donabedian (1966: 196). ‘A final comment concerns the frame of 
mind with which studies of quality are approached. The social imperatives that give rise to 
assessments of quality have already been referred to. Often associated with these is the zeal 
of the social reformer. Greater neutrality and detachment are needed in studies of quality. 
More often one needs to ask “What goes on here?” rather than “What is wrong; and how can 
it be made better?” ’ 
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3 Measuring in-hospital mortality in 
Australia 

3.1 Current in-hospital mortality reporting in 
Australia 
In recent years, numerous studies have been published describing mortality rates calculated 
for Australian deaths in hospitals for a variety of conditions and using a number of different 
methods. Much of this work is carried out by academics and physicians—sometimes in 
collaboration with government health departments. These types of activities are generally 
reported in the public domain within peer-reviewed journals (National and International) or 
as government-badged published reports. A number of examples of this type of work have 
been cited in the current report. 

In addition to what appears in the public domain, an unknown amount of work on in-
hospital mortality is effectively hidden and commonly referred to as ‘grey literature’. Grey 
literature refers to materials that are either unpublished, or published but not in the peer 
reviewed literature. Such material is typically produced by governments, business or 
industry, and can include government reports, technical reports, white papers, or position 
papers. 

A classic example of grey literature with high relevance to the current topic is the emergence 
of ‘quality reports’ that were produced in 2004 for every Queensland public hospital, but not 
available to the public. These reports came to light during the Bundaberg Hospital inquiry 
(Van Der Weyden 2005). Currently, the Queensland Government is regularly publishing in 
the public domain a number of indicators, including condition specific in-hospital mortality 
indicators (e.g. Moving ahead, Queensland Public Hospitals Performance Report 2006–07 
(Queensland Health 2007)).  

To the best of our knowledge, no other jurisdiction in Australia publicly reports  
in-hospital mortality data in this way. 

We are aware that each state and territory has developed advisory bodies that examine a 
variety of elements of patient safety within hospitals. Many, if not all, cover the reporting of 
adverse events (Wilson & Van Der Weyden, 2005), but only some of this work reaches the 
public domain. 

The Commission may be aware that recently the Health Round Table (a privately owned, 
not-for-profit organisation), which is voluntarily provided with regular extracts from 
hospital morbidity collections by a number of Australian hospitals, has undertaken a series 
of analyses of in-hospital mortality using that data. It is currently feeding that data back to 
those hospitals. However, the methods used by that organisation are by their nature 
proprietary, and the outcomes not subject to any further scrutiny. The work of the Health 
Round Table is likely to promote further interest in this issue, both from the hospitals who 
subscribe to the Health Round Table, and others.  

Each state and territory contributes hospital separations data to the AIHW for collation. The 
data elements provided by the jurisdictions are governed by National minimum data 
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requirements. Beyond these minimum requirements, the data items collected by each 
jurisdiction can range in number and complexity. For example, Victoria has been the only 
jurisdiction collecting data on comorbidities present on admission for several years 
(colloquially known as C-codes). The availability of additional data items to individual 
jurisdictions means that the types of variables that can be used in risk-adjustment models 
will vary according to each state and territory. Additionally, the types of models used to 
calculate in-hospital mortality may also vary. 

The present review of the literature has revealed one commonly-used method for calculating 
in-hospital mortality. Variations in the inclusion of factors to be used for risk-adjustment 
have been described and the results of these variations discussed. It is likely that any 
recommendation for a single method of calculating in-hospital mortality will create 
discussion among the jurisdictions regarding whether the recommended method is as 
appropriate or sophisticated as the variety of methods employed to date by individual 
researchers, or by health departments or individual hospitals. 

It is important that any method that is singled out as the basis for creating a National 
indicator of in-hospital mortality is replicable by individual researchers, jurisdictional health 
departments or individual hospitals. By basing an indicator on currently available national 
minimum standards governed administrative data, such as the National Hospital Morbidity 
Database (NHMD), the ability of the various stakeholders to validate and replicate in-
hospital mortality rates is assured. 

3.2 Mortality rates in Australian hospitals 
The second part of this report is an analysis of Australian hospital mortality data so as to 
demonstrate is suitability as the basis for measuring in-hospital mortality and to show what 
National indicators of hospital mortality can be developed now, and in the future.  

The analyses that have been undertaken have been mindful of certain considerations.  

1. Although the analyses has been conducted entirely on Australian data, we recognise the 
importance of (a) allowing for comparisons between components of the Australian 
health system as a whole with other health systems, and (b) for enabling analyses to be 
‘rolled down’ to the hospital or health-service level and ‘rolled up’ to state or other 
jurisdictions.  

2. These analyses are provided by way of demonstration. The aim has been to provide the 
Commission with worked examples of analytic methods, scope of analyses and methods 
of presentation, so that the Commission can make an informed choice not only on 
whether to use mortality rates for reporting purposes, but, if so, how those rates might 
be presented. 

3.3 The analytic strategy 
The analytic strategy adopted was based on the outcomes of the literature review. The 
review made it clear that there is an emerging international consensus on best practice for 
national studies of hospital mortality. Those studies have the following characteristics.  
• Observed in-hospital mortality rates are determined from existing nationally mandated 

administrative hospital morbidity data sets.  
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• The information contained within those data sets is used to risk adjust those rates.  
• When possible, mortality is studied up to 30 days after discharge from hospital, but 

when linkage with births and deaths registers is not feasible, deaths during hospital stay 
are an acceptable end point. 

• Risk adjustment is by way of logistic regression and indirect standardisation, which is 
used to calculate expected mortality rates.  

• Those expected rates become the denominators of the ratio of observed to expected 
outcomes (O/E). A ratio value less than 1 is favourable and a ratio of greater than 1 
unfavourable.  

• When the ratio is multiplied by 100 the convention is to describe result as the HSMR 
(Jarman et al. 1999).  

• HSMRs are presented in a variety of ways: as tables; as caterpillar plots; and, more 
recently, by way of funnel plots.  

• Multi-level modelling has begun to be used to look at intra-hospital and  
inter-hospital variations in HSMR over time.  

Our analyses were framed by a number of specific methodological concerns related to the 
implementation of the general approach described above. The most pressing were what 
variables to test and choose for risk-adjustment purposes? What proportion of total deaths in 
hospital to choose for analyses? What kind of model development process should be 
undertaken? How should institutional differences be taken into account? How should 
HSMRs be presented? 

Our approach to each of these issues is outlined before a detailed presentation of the 
methods and results of the analyses. Our overarching strategy was as follows: having the 
literature review in hand and international practice identified, we came to the view that the 
recently released study of mortality in Canadian hospitals (CIHI 2007) was particularly 
relevant for our purposes.  

The Canadian method is consistent with those used by the Dr Foster group in the  
UK and in the Dutch study (Heijink et al. 2008). Although the Canadian hospital system 
differs in many ways from that of the Australian system, it does not suffer the fragmentation 
found in the USA, and the lack of a national data system other than the Medicare patient care 
group. Unlike the USA, Canada has moved to using a clinical modification of the ICD-10, as 
has Australia. There is a nationally consistent approach to gathering morbidity data in the 
Canadian study that benefits from familiarity with coding in the context of diagnosis-related 
grouping and does not suffer from the problems with linking consultant completed episodes 
that can make comorbidity risk adjustment problematic using data from the British National 
Health Service (NHS).  

The documentation of methods provided by the Canadian Institute for Health Information 
(CIHI) is noteworthy for its openness and comprehensiveness. The CIHI had previously been 
contacted by the AIHW and expressed a willingness to provide further information about 
their method if required, but the quality of their documentation has meant that, as yet, it has 
not been necessary to take them up on their offer. 

Taking all that into account, we decided to base our initial model building on the example 
provided by the Canadian study, at least in relation to the choice of variables and 
confounders for testing within a regression model, and for the regression model building 
process. In that way, the Commission will have access to an example of HSMR creation that 
is broadly comparable with that used in Canadian, Dutch and  
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UK studies—all of which have themselves been strongly influenced by the methods 
developed by the Dr Foster group in the UK.  

Later, we describe an exercise in which we built an Australian risk-adjustment model using a 
somewhat more refined process than the modelling exercise described in the Canadian study 
documentation. The pros and cons of using a more analytically sophisticated model, which 
differs from the model that is currently used most widely internationally, are discussed 
further in the conclusions. 

3.3.1 Cross sectional and longitudinal analyses 
The main body of the work is a cross-sectional analysis of one year of national data covering 
the period 1 July 2005 to 30 June 2006. This is based on logistic regression modelling. As 
noted above, we used an analytic approach closely modelled on current Canadian practice, 
which is similar to methods used in UK and Dutch work. 

As discussed in the literature review, longitudinal studies are emerging as a valuable way to 
assess data, as well as for investigating the presence of trends in mortality outcomes. We 
used a two-stage method similar to Heijink et al. (2008), in which logistic regression 
modelling (as above) is followed by multi-level modelling.    

3.3.2 Observed mortality 
Observed mortality was confined to deaths in hospitals. Had data been available for this 
project which included deaths during the 30 days post-discharge, then they would have been 
used as well. While the availability of such data would have been preferable, our assessment 
of the literature led us to conclude that it was safe to proceed with an analysis of in-hospital 
mortality alone (see Section 2.4.2).  

3.3.3 Choice of variables for risk adjustment of expected mortality 
rates 
The variables tested for the purposes of risk adjustment were all derived from the hospital 
data set that were provided by the AIHW. The study of the Canadian data, and the existing 
literature, made it clear that the variables to be included needed to cover principal and 
secondary diagnoses, demographic information, modes of admission and length of hospital 
stay. A small number of exclusion criteria were applied, including admissions for palliative 
care, neonates (there are considerable difficulties in Australia with issues around coding of 
qualified and unqualified new-born babies, which makes the identification of denominators 
problematic) and patients who discharged themselves against medical advice and so did not 
complete the hospital care judged necessary by their treating doctors. We also tested the 
value of adding a measure of social deprivation (see Appendix 5 Data issues for information 
on how socioeconomic indicators for areas (SEIFAs) were derived) related to the usual place 
of residence of patients, but did not include it in our final model (see below). We found that 
the addition of a SEIFA measure did not materially add to the discriminatory power of our 
risk-adjustment model, and it makes international comparisons problematic, because social 
deprivation is measured quite differently in different countries. 
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3.3.4 What proportion of total deaths in hospital should be chosen 
for analysis? 
The majority of international studies of hospital mortality have been confined to a subset of 
all primary hospital diagnoses. The underlying rationales for choosing  
high-risk groups of one kind or another have been discussed in the literature review. 
However, the recent trend in the international literature has been to confine analyses to the 
diagnoses assigned most often to cases ending with death in hospital and which account for 
80% of in-hospital deaths in the population of interest. We followed that practice. We found 
that 68 three-character Principal Diagnosis ICD-10 codes accounted for 80% of in-hospital 
deaths in the 2005–06 NMDS data set (see Appendix 1). About one-fifth of records had one of 
these 68 Principal Diagnosis codes.  

We also analysed the complement of the first group—that is, cases with any Principal 
Diagnosis code except the 68 that were most frequently present in records of  
in-hospital deaths. By definition, this second group includes 20% of in-hospital deaths.  
It comprises about four-fifths of all records. Because of the large number of principal 
diagnoses involved, this required a somewhat different approach to risk-adjustment 
modelling, which is described in Section 4.5.2. The method presented there is a novel 
contribution to the analysis of in-hospital mortality, and may be of interest to others.  

Thirdly, we analysed the whole set of data meeting the study criteria. This is the sum of the 
first and second sets. By definition, it includes all records and all deaths.  

3.3.5 What kind of model development process should be 
undertaken? 
Most of our analyses were undertaken after a risk-adjustment-model building process, in 
which we followed the strategy adopted for the Canadian study (CIHI 2007). We refer to this 
as the risk-adjusted Canadian referred mortality model (RACM) and model parameters are 
presented for that model. 

We also undertook another model-building process that includes a more sophisticated 
approach to variable preparation and inter-action analysis in the logistic regression model. 
We refer to that model as the elaborated risk-adjusted mortality model (ERM). The ERM 
model is described fully and some comparisons with the RACM model are included in 
Sections 4.8 and 5.8. Although the ERM model has performance advantages, we have opted 
to use the RACM model for the main part of the report, because it is relatively well-
established in the literature. The Commission may wish to consider how the ERM model 
might be used. A comprehensive analysis using the ERM model has not been undertaken, 
though it would be straightforward to complete such an analysis if required. 

3.3.6 How should institutional differences be taken into account? 
The importance of making inter-hospital comparisons only within groups of like hospitals 
was emphasised in the literature review. There is a well-established peer grouping process 
for Australian public hospitals, supported by the Commonwealth, and based on a hospital 
peer group classification developed by the AIHW. Although originally peer grouping was 
simply by reference to volumes of activity, the process has been somewhat refined, and is 
described as follows (DoHA 2007: 1)  
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‘Although not specifically designed for purposes other than the cost per  
casemix-adjusted separation analysis, the peer group classification is recognised as a 
useful way to consistently categorise hospitals for other purposes, including presentation 
of other data.’ 

The AIHW national peer group classifications are determined using several criteria: 

• size of hospital determined by number of acute casemix weighted separations and actual 
separations 

• demographic characteristics of major patient groups; e.g. women and children, 
Aboriginal and Torres Strait Islander status 

• teaching and research status 

• proportions of acute, rehabilitation, palliative care and non-acute patients treated.  

The inclusion criteria and code numbers for these peer groups are shown in Table 2.  
Although the model building exercise made use of all available Australian hospital 
separations, hospital level results for public hospitals are displayed within peer groups, as 
described above.  

Equivalent grouping was not available for private hospitals. Indeed, many private hospitals 
are not separately identified in the NHMD. Hence, analysis of private hospitals was not 
undertaken in this project.  

3.3.7 How should HSMRs be presented? 
The HSMRs produced by our analysis are presented as tables, caterpillar plots and funnel 
plots. 

3.3.8 Confidentiality 
Due to the sensitive nature of the work undertaken for this project, we have taken two steps 
in order to secure the confidentiality of individual institutions:  

1. Establishment identifiers have been replaced with study-assigned identification codes.  

2. The HSMR values present in the results section for the single-year analysis have been 
adjusted using a recalibration process in order to mask their true value. The recalibration 
relates to the process of identifying deaths in all patients receiving palliative care. The 
effect is to produce values that serve the purpose of demonstrating the operation and 
performance of the methods, and the distributions of HSMRs, but provides institution-
specific HSMR values that differ somewhat from the values that would be obtained 
when applying the methods without recalibration. 

These two steps have the effect of masking individual institutions and preventing other 
parties from attempting to apply the model to their own institutional data in order to try to 
compare themselves with other institutional HSMRs present in the report or presented 
elsewhere. The recalibration was applied only to the production of the HSMR values for the 
single-year analysis. All other analyses (e.g. discriminatory and explanatory power, 
goodness of fit) were carried out on unmasked data. Details of the recalibration can be made 
available on request.  
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We recognise that individual HSMRs will be of high interest to institutions and other 
interested parties. However, at this stage of the process, it is important that the focus remains 
on the method and means of presentation rather than the actual HSMR values. As mentioned 
previously, a number of institutions who are members of the Health Round Table, are 
currently in possession of hospital mortality data for their own and other hospitals. The 
recalibration of HSMR values here means that comparison with results provided by bodies 
such as the Health Round Table will not allow confident identification of particular 
institutions. 
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4 Methods 

4.1 Data 
National hospital separations data were provided by the AIHW from the NHMD.  
A separation is defined as: ‘A formal or statistical process by which an episode of care for an 
admitted patient ceases’ (AIHW 2005). 

This report uses data for hospital separations that occurred in Australia during the 3 years 
from 1 July 2004 to 30 June 2007.  

Data for the second year in this 3–year period were used for the single-year analysis.  

Hospital separations in 2004–05 and 2005–06 were coded according to the 4th edition of ICD-
10-AM (NCCH 2004). Those in 2006–06 were coded according to the 5th edition.  

4.1.2 Peer groups 
The hospital peer groups used in this report are according to the AIHW Peer Group Report 
Round 10 (2005–2006) AR-DRGv5.0. The groups and their designations are shown in Table 2.  

We have not presented results for all peer groups. To do so would require a large number of 
tables and figures, not all of which are necessary for the purposes of this project.  

Table 2: AIHW Peer Groups  

AIHW Peer Group Designation Definition 

Principal referral and specialist 
women’s and children’s  

A1 Major city hospitals with >20,000 acute casemix-adjusted separations and Regional 
hospitals with >16,000 acute casemix-adjusted separations per annum 

 A2 Specialised acute WCHs with >10,000 acute casemix-adjusted separations per 
annum 

Un-peered and other hospitals  A9 Prison medical services, special circumstance hospitals, Major city hospitals with 
<2000 acute casemix-adjusted separations, hospitals with <200 separations, etc.

Large hospitals B1 Major city acute hospitals treating more than 10,000 acute casemix-adjusted 
separations per annum 

 B2 Regional acute hospitals treating >8,000 acute casemix-adjusted separations per 
annum, and remote hospitals with >5,000 casemix-adjusted separations

Medium hospitals C1 Medium acute hospitals in Regional and Major city areas treating between 5,000 
and 10,000 acute casemix-adjusted separations per annum  

 C2 Medium acute hospitals in Regional and Major city areas treating between 2,000 
and 5,000 acute casemix-adjusted separations per annum, and acute hospitals 
treating <2,000 casemix-adjusted separations per annum but with >2,000 
separations per annum 

Small acute hospitals D1 Small Regional acute hospitals (mainly small country town hospitals), acute 
hospitals treating <2,000 separations per annum, and with <40% non-acute and 
outlier patient days of total patient days

 D2 Small non-acute hospitals, treating <2,000 separations per annum, and with >40% 
non-acute and outlier patient days of total patient days (D2) plus Multipurpose 
service (E2) – Small subacute and non-acute hospitals (G) 

 D3 Small remote hospitals (<5,000 acute casemix adjusted separations but not 
'Multipurpose services' and not 'Small non-acute'. Most are <2,000 separations)  

Note: Excludes psychiatric hospitals. Definitions from Australian Hospital Statistics 2005–06 (AIHW 2007). 
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4.2 Single-year analysis: 2005–06 
Rates of in-hospital mortality amongst Australian hospitals in 2005–06 were compared using 
indirect standardisation. Separate analyses were performed for three sets of cases: 

1. Diagnoses accounting for 80% of mortality: cases with one of the principal diagnosis 
codes listed in Appendix 1. These 68 codes are associated with the largest numbers of 
cases ending with in-hospital death in the subset of the 2005–06 NHMD file meeting our 
study criteria. This group accounts for 80% of deaths and about 20% of cases.  

2. Diagnoses accounting for the remaining 20% of mortality. This group includes cases 
with any Principal Diagnosis code that is not in Appendix 1.  

3. All diagnoses. This is the sum of the previous two groups, and includes 100% of in-scope 
cases and 100% of in-scope deaths. 

4.3 Calculation of HSMRs 
HSMRs were calculated for each hospital using the ratio of the observed to expected number 
of deaths:  

 
Actual number of in-hospital deaths amongst selected diagnosis groups 

HSMR = 
Expected number of in-hospital deaths amongst selected diagnosis groups 

× 100 

 

Logistic regression was used to calculate the expected number of deaths in each hospital. The 
‘standard’ population was the combined population of all hospitals included in each 
analysis. Each HSMR was therefore a ratio of the observed hospital mortality rate to the rate 
for all hospitals combined based on patients with the same characteristics. The logistic 
regression model used for all principal analyses, referred to here as the RACM model, 
followed the approach of the CIHI (2007), which has also been used in the UK and Holland.  

Hospital-specific expected numbers of deaths were calculated by summing the probabilities 
of death obtained from coefficients for the logistic regression model. The independent 
variables included in the RACM model are listed and described in Section 4.5.2. 

As stated in Section 3.3.8, the HSMRs were recalibrated before presentation.  

4.4 Graphical methods of presentation 
Graphs were generated using Stata Statistical Software, Release 10. 

4.4.1 Caterpillar plots 
Caterpillar plots are simply graphical presentations of HSMRs from each institution within a 
population of interest. Each institution’s HSMR is graphed from three points: the HSMR 
value and the upper and lower 95% confidence limits. The population average of 100 is 
provided by way of reference. The plots were generated with the relevant Stata commands. 
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4.4.2 Funnel plots 
Funnel plots allow many points to be plotted simultaneously, with information about 
whether each point is significantly above or below the expected, or average, value. Funnel 
plots were developed as a method of displaying data for statistical process control (SPC). 
They avoid the ranking approach that some methods of displaying performance data use. 
The Association of Public Health Observatories of the UK (APHO) has adopted and adapted 
this method for a report on indicators of public health in the regions of England, and the 
APHO method for generating funnel plots was accessed at 
http://www.apho.org.uk/default.aspx (June 1 2008) and used here.   

Creating a funnel plot requires the superposition of two charts: 

1. A scatter plot of the expected number of deaths against the HSMR. 

2. A scatter plot with interpolated lines of the SMR; that is, 100% and Poisson control limits 
around that measure. The ‘invgammap’ function in STATA was used to determine the 
Poisson control limits.  

The construction of the control limits depends on distribution of the underlying performance 
measure. The width of the limits is somewhat arbitrarily equivalent to 95% and 99.8% 
confidence intervals around the target value (roughly equivalent to two and three standard 
deviations). The three standard deviations measure is often taken as the boundary between 
‘common-cause’ and ‘special-cause’ variation in control chart method. 

4.5 Case selection 

4.5.1 Inclusion/exclusion criteria 

Inclusion criteria 
• admission for acute care (episode type=1) 

• age at admission from 0 to 120 years 

• gender recorded as male or female (i.e. not ‘missing’) 

• length of stay up to 365 consecutive days 

• admission category: either elective or emergency 

• Principal Diagnosis at discharge. The proportion of in-hospital deaths was calculated for 
the set of cases with each three-character ICD-10-AM code. Diagnosis codes were ranked 
in descending order of this proportion. Three sets of records were selected, each being 
used for part of the analysis:  

(i) high risk: the set of records with three-character ICD-10-AM codes that ranked 
highest in terms of the diagnosis-specific number of deaths and which, together, 
account for 80% of all in-hospital deaths. (See Appendix 1.) 

(ii) lower risk: the set with all other three-character ICD-10-AM codes  

(iii) all records satisfying the selection criteria. This is the sum of (i) and (ii).  
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Exclusion criteria 
• patients discharged against medical advice (defined using AIHW data element ‘mode of 

separation’ = Left against medical advice/discharge at own risk) 

• palliative care patients (recalibrated for single year HSMR production) 

• neonates (infant age >0 and <= 28 days) 

Outcome 
• death in hospital was defined as Mode of Separation = died 

4.5.2 The logistic regression model 
The independent variables used for the RACM model used in all primary analyses were:  

• age (in years at time of admission)  

• sex (based on sex recorded at discharge) 

• length of stay group (as six separate categories; i.e. 1 day, 2 days, 3–9 days, 10–15 days, 
16–21 days and 22–365 days) (same day admission/separation cases were included in 
the ‘1 day’ category) 

• admission category (emergency or elective)  

• diagnosis group (based on the first three digits of the principal diagnosis coded 
according to ICD-10-AM 4th Edition) The groups were specified using NHMD data for 
2005–06. 

a) High-risk group, accounting for 80% of in-hospital mortality 

The first three characters of the principal diagnosis code (ICD-10-AM) were used to 
detect the conditions that (i) have the highest number of cases ending with the death of 
the patient in hospital and (ii) in aggregate, account for 80% of all deaths in hospital. In 
total, 68 three-character ICD-10-AM codes are in this set (see Table A1.1, Appendix 1).  

b) Lower risk group, accounting for the other 20% of in-hospital mortality 

This set includes cases with all principal diagnosis codes except the 68 in the  
‘high-risk’ group. For the low risk of mortality analysis, rather than creating a separate 
coefficient for each of the 1,518 three-character principal diagnosis codes present in the 
group of cases that accounted for the remaining 20% of in-hospital mortality, a 10–
category risk variable was created based on the crude risk of  
in-hospital mortality for each three-character diagnosis category. The risk categories are 
deciles of the log of the crude risk. Risk deciles were determined by calculating the 
absolute risk for each diagnosis group (i.e. taking all deaths in each diagnosis group and 
dividing by the total number of separations in the same diagnosis group). The log of the 
absolute risks was divided into 10 equal groups. Diagnoses that did not account for any 
deaths were included in the lowest decile of risk.   
c) 100% of in-hospital mortality 

The same risk approach as that defined in (b) was used. The data include 68+1,518=1,586 
three-character ICD-10-AM diagnoses groups. 
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• comorbidity group (either 0, 1 or 2 and based on the Charlson Index score (Quan et al. 
2005)). Comorbidity status was derived from the additional diagnosis codes in the 
NHMD, which were used to generate a Charlson Index score for each patient based on 
Quan’s method (Quan et al. 2005). The Charlson Index was converted to a score of 0, 1 or 
2. Patients whose Charlson Index value is 2 or higher were assigned a score of 2.  

• inward transfer status (admission mode=1 indicating whether a patient was transferred 
from an acute institution) 

Women's and Children's hospitals (WCHs) 
The effect of including WCHs in the analyses was assessed by comparing the HSMRs based 
on diagnoses for the leading 80% of in-hospital deaths with and without WCHs included in 
the logistic regression model.  

4.6 Model checking 
For each of the three analyses that used the RACM approach, models were assessed for 
goodness of fit, discriminatory power and explanatory power. 

4.6.1 Goodness of fit 
Goodness of fit was assessed using the Hosmer–Lemeshow (2000) goodness-of-fit statistic for 
10 groups based on deciles of risk (StataCorp 2007). 

4.6.2 Model discrimination 
An assessment of the discriminatory power of each model was based on the c-statistic (area 
under the ROC). 

4.6.3 Explanatory power 
The pseudo-R2 statistic is reported to assess the degree to which included variables 
decreased the unexplained variance in the data.   

4.7 Calculation of 95% confidence intervals 

a) for HSMR point estimates 
95% confidence intervals for the tables and caterpillar plots were calculated using Byar's 
approximation: 

Lower confidence limit = O/E*(1–1/(9*O) – 1.96 / (3*sqrt (O)))3 * 100   

Upper confidence limit = (O + 1)/E*(1– (1/(9*(O+1))) + 1.96 / (3*sqrt (O+1)))3 * 100   

where O = observed number of deaths and E = Expected number of deaths. 
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b) for funnel plots 
The confidence intervals displayed in funnel plots were calculated by assuming a Poisson 
(inverse gamma) distribution for the expected number of deaths. Intervals roughly equal to 
two and three standard deviations for the HSMR funnel plots were plotted.  

4.8 Further development of the risk model 
For the high-risk (80%) group, we compared HSMRs calculated using the RACM model with 
HSMRs calculated using our own ERM model (see Section 3.3.5). Although that model was 
based on the same variables as the RACM model, the effect of transforming independent 
variables such as age to more closely approximate the distributional characteristics of the 
logit curve was tested empirically. All significant two-way interactions in the regression 
model were tested separately in a main effects model using the LR test. All significant 
interactions were then included in a final model and removed one at a time: the effect of each 
removal being assessed using the LR test. 

Once the final model was chosen, we split the data set into a development and validation 
data set (50% of the data for each) and assessed model fit on the validation set using the 
coefficients obtained from the developmental data set. This allows the assessment of whether 
or not the chosen model over-fitted the given data and would not perhaps fit so well on 
other data sets; for example, different years.  

In addition, we also assessed the effect of the addition of the SEIFA index of disadvantage (as 
either a continuous or categorical variable) on the pseudo-R2 statistic. (The SEIFA index is 
described in Appendix 5 Data issues.) 

4.9 Longitudinal analysis 
In Section 2.7.2 we described recent growth in longitudinal analysis of in-hospital mortality. 
This approach allows analysis of trends—a matter of considerable interest. It also provides a 
way to assess the extent to which information derived from a data source is informative 
about characteristics of hospitals, rather than reflecting random variation. The latter requires 
treatment of values of in-hospital mortality at several time-points as repeated measures.  

A prominent recent example of this approach is the analysis of Dutch data reported by 
Heijink (2008). We opted to use the same approach, because this would allow comparison.  

The method is described further in Section 5.10.1.  

4.10 Statistical software 
Data preparation and cleaning were carried out using SPSS Version 14.0 for Windows. 

All other analysis, and preparation of caterpillar plots and funnel plots, was done using Stata 
Statistical Software, Release 10. 
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5 Results 
Results of the one-year analysis are presented separately for analysis of the 80%, 20% and 
100% in-hospital mortality data sets, and stratified by peer group (although data from all 
hospitals was combined for each of the three analyses). Peer groups were identified using the 
National Hospital Cost Data Collection (NHCDC) Round 10 (2005–2006) Peer Group Report 
(DoHA 2007). Cost-weighted separations were calculated by applying the AIHW 2005–06 
DRG cost weights to each separation and summing these cost weights to calculate the 
number of cost-weighted separations. A selection of descriptive statistics for the total sample 
is presented in Table 3. 

Effect of Women's and Children's hospitals 
Women’s and Children’s hospitals have very different mortality profiles from other centres, 
and it makes little sense to compare these specialised centres with anything other than 
similarly specialised centres. However, there are many more general hospitals that include 
obstetrics, gynaecology and paediatrics in their casemix. The effect of including WCHs in the 
principal analyses was assessed by comparing the HSMRs based on diagnoses for the 
leading 80% of in-hospital deaths with and without WCHs included in the logistic regression 
model. Because HSMRs were virtually identical with both approaches, the data from WCHs 
were included in all analyses. The WCHs were also analysed as a specific peer group (A2), 
though the results of the single-year analysis are not presented in this report. 

Table 3: Selected descriptive statistics for the total sample of 2005–06 hospital separations 

 N Per cent 

Gender  
 Male 3,438,248 47.02 
 Female 3,873,645 52.98 
 Persons(a) 7,311,983  

Mode of separation  
 Discharged at own risk 35,707 0.49 
 Died in hospital 71,122 0.97 

Type of episode of care  
 Acute care 7,016,160 95.95 
 Rehabilitation care 151,527 2.07 
 Palliative care 25,741 0.35 
 Other 109,685 1.50 
 Not stated 8,870 0.12 

Health-care sector  
 Public hospital 4,450,509 60.87 
 Private hospital 2,298,437 31.43 
 Public psychiatric hospital 15,567 0.21 
 Private free standing day hospital 547,470 7.49 

Diagnosis groups  
 High risk (80% of total in-hospital deaths) 1,109,758  
 Low risk (20% of total in-hospital deaths) 4,924,758  
 All diagnoses (100%of total in-hospital death) 6,034,516  

(a) Total does not sum due to a small number of cases with unknown gender 
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5.1 Inclusions and exclusions 
Of the 7,311,983 records in the original 2005–06 data set, 1,277,467 were excluded, as follows: 
900,832 due to admission category being neither elective or emergency; 295,823 admitted for 
a reason other than acute care; 36,553 due to being a palliative care patient (note that the 
recalibration process described in Section 3.3.8 was confined to the numbers of palliative care 
patients selected for analysis); 32,856 due to patients being discharged against medical 
advice; 11,164 due to being a neonate (infants age between 0 and 28 days); 189 due to length 
of stay being greater than 365 days; 40 due to gender not being recorded as either male or 
female; and 10 due to having a recorded age that was not in the range 0 to 120 years. 

5.1.1 High-risk group (80% of in-hospital mortality) 
Of the 6,034,516 records retained after the above exclusions, 4,931,241 records were omitted 
because the principal diagnosis was not one of the 68 diagnoses in the  
‘high-risk’ group, associated with 80% of deaths in hospital (Appendix 1).  
The remaining 1,103,275 records were included in the analysis (see Table 4).  
Of the 923 hospitals in the original 2005–06 data set, 817 had admitted patients meeting these 
inclusion criteria in 2005–06.  

Table 4: Selective descriptive statistics for the high-risk case group (80% of in-hospital mortality in 
2005–06) 

N Per cent 

Gender  

 Male 588,106 53.31 

 Female 515,169 46.69 

Mode of separation  

 Discharged at own risk 0 0.00 

 Died in hospital 36,046 3.27 

Health-care sector  

 Public hospital 744,481 67.48 

 Private hospital 309,064 28.01 

 Public psychiatric hospital 9 0.00 

 Private free standing day hospital 49,721 4.51 
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5.1.2 Lower risk group (20% of in-hospital mortality) 
We also analysed in-hospital mortality for the in-scope records not included in the ‘high-risk’ 
group. Table 5 describes this group.  

Table 5: Selective descriptive statistics for the lower risk case group (20% of in-hospital mortality in 
2005–06) 

N Per cent 

Gender  

 Male 2,324,908 46.97 

 Female 2,624,987 53.03 

Mode of separation  

 Discharged at own risk 0 0.00 

 Died in hospital 9,128 0.18 

Health-care sector  

 Public hospital 2,841,781 57.41 

 Private hospital 1,669,056 33.72 

 Public psychiatric hospital 13,113 0.26 

 Private free standing day hospital 425,952 8.61 

 

5.1.3 Total in-hospital mortality 
All in-scope records were included in this part of the analysis. Table 6 presents descriptive 
statistics. 

Table 6: Selective descriptive statistics for the case group including 100% of in-hospital mortality in 
2005–06  

N Per cent 

Gender  

 Male 2,913,014 48.12 

 Female 3,140,156 51.88 

Mode of separation  

 Discharged at own risk 0 0.00 

 Died in hospital 45,174 0.75 

Health-care sector  

 Public hospital 3,586,262 59.25 

 Private hospital 1,978,120 32.68 

 Public psychiatric hospital 13,122 0.22 

 Private free standing day hospital 475,673 7.86 
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5.2 Model building and the effect of covariates on 
odds of in-hospital mortality 
The odds ratios for the effect of each of the included covariates on in-hospital mortality for 
80%, 20% and 100% mortality groups were extracted and are presented as point estimates, 
together with standard errors and 95% confidence intervals, in Tables 7–9. Readers are 
reminded that these results were obtained without recalibrating the palliative-care variable. 

The odds ratios can be interpreted as the effect of the presence of each modelled 
characteristic on the likelihood that an episode in hospital will end with in-hospital death, 
after allowing for all of the other variables in the model. For example, considering the high-
risk group (Table 7), elective admissions were associated with a little over one-quarter (0.281 
times) the likelihood of in-hospital death compared with emergency admissions (used as the 
reference group). Similarly, the presence of two or more Charlson comorbidity categories 
was associated with odds of fatal outcome that were more than 6 times higher (6.048 times) 
than if no Charlson comorbidity was present.  

Table 7: Odds ratios for the effect of each of the included covariates on 80% in-hospital  
mortality 

 Odds ratio 95% CI p-value 

Age (years) 1.045 (1.044–1.046) <0.001 

Sex (Male=1, Female=2) 1.007 (0.984–1.031) 0.556 

Length of stay    

   1 day 1 – – 

   2 days 1.035 (0.991–1.082) <0.122 

   3–9 days 0.633 (0.613–0.652) <0.000 

   10–15 days 0.66 (0.634–0.687) <0.000 

   16–21 days 0.831 (0.789–0.874) <0.000 

   22–365 days 1.106 (1.058–1.157) <0.000 

Urgency admission 

(Emergency=1, Elective=2) 

   

   1 1 – – 

   2 0.281 (0.271–0.291) <0.001 

Canadian Charlson category    

   0 1 – – 

   1 2.756 (2.637–2.880) <0.001 

   2 6.048 (5.780–6.330) <0.001 

Transferred patient 1.578 (1.519–1.639) <0.001 

Logistic regression                           Number of obs     =    1103275 

                                               LR chi2(78)     =     7748.16 

                                               Prob > chi2     =       0.0000 

Log likelihood = –120028.66                  Pseudo R2      =       0.2440 
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Table 8: Odds ratios for the effect of each of the included covariates on 20% in-hospital  
mortality 

 Odds ratio 95% CI p-value 

Age (years) 1.031 (1.030–1.032) <0.000 

Sex (Male=1, Female=2) 0.929 (0.890–0.970) <0.001 

Length of stay    

   1 day 1 – – 

   2 days 1.493 (1.365–1.632) <0.000 

   3–9 days 1.467 (1.378–1.562) <0.000 

   10–15 days 1.994 (1.845–2.155) <0.000 

   16–21 days 2.943 (2.689–3.221) <0.000 

   22–365 days 3.808 (3.528–4.111) <0.000 

Urgency admission 

(Emergency=1, Elective=2) 

   

   1 1 – – 

   2 0.322 (0.305–0.340) <0.000 

Canadian Charlson category    

   0 1 – – 

   1 2.696 (2.2.542–2.860) <0.000 

   2 7.155 (6.742–7.593) <0.000 

Transferred patient 1.819 (1.705–1.939) <0.000 

Logistic regression                           Number of obs    =     4949902 

                                               LR chi2(20)    =    45312.60 

                                               Prob > chi2    =        0.0000 

Log likelihood = –43931.126                   Pseudo R2    =        0.3402 
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Table 9: Odds ratios for the effect of each of the included covariates on 100% in-hospital  
mortality 

 Odds ratio 95% CI p-value 

Age (years) 1.036 (1.035–1.037) <0.000 

Sex (Male=1, Female=2) 0.955 (0.936–0.974) <0.000 

Length of stay    

   1 day 1 – – 

   2 days 1.02 (0.982–1.060) <0.299 

   3–9 days 0.686 (0.668–0.705) <0.000 

   10–15 days 0.783 (0.756–0.811) <0.000 

   16–21 days 1.054 (1.009–1.101) <0.017 

   22–365 days 1.466 (1.413–1.522) <0.000 

Urgency admission 

(Emergency=1, Elective=2) 

   

   1 1 – – 

   2 0.301 (0.293–0.309) <0.000 

Canadian Charlson category    

   0 1 – – 

   1 2.165 (2.095–2.236) <0.000 

   2 4.571 (4.422–4.726) <0.000 

Transferred patient 1.77 (1.715–1.827) <0.000 

Logistic regression                          Number of obs    =      6053177 

                                              LR chi2(20)    =   189758.61 

                                              Prob > chi2    =         0.0000 

Log likelihood = –171379.69                  Pseudo R2    =         0.3563 

 

5.3 Discriminatory and explanatory power 
Tables 10 to 12 display the c-statistic, pseudo R2, and the change in pseudo-R2 for subsets of 
the independent variables included in the RACM model for the three groups. 

The generally high values of the c-statistic largely reflect the large size of the data set 
analysed. The R2 values are larger with the fuller models, indicating a reduction in 
unexplained variance with the addition of the covariates shown.   

Although these models are not exactly comparable with any of the results from the literature 
that are summarised in Table 1, it is worth noting that the values presented in Table 10 of the 
measures of discrimination and explanatory power for the full models are certainly not low 
in relation to the ranges of values in Table 1.   
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Table 10: c-statistic, pseudo R2, and the change in pseudo R2 for subsets of the independent 
variables included in the RACM model for 80% in-hospital mortality  

Included variables c-statistic Pseudo R2 � Pseudo R2 

Age 0.7058 0.0581  

Age, sex 0.7068 0.0586 0.0005 

Age, sex, LOS group,  0.7289 0.0727 0.0141 

Age, sex, LOS group, urgency 0.767 0.1017 0.029 

Age, sex, LOS group, urgency, pdiag_aihw3 0.8583 0.2186 0.1169 

Age, sex, LOS group, urgency, pdiag_aihw3, cancharlson 0.8751 0.2424 0.0238 

Age, sex, LOS group, urgency, pdiag_aihw3, cancharlson, transfer 0.8764 0.244 0.0016 

Model Un-stratified, 80% mortality N =  1,103,275 

 

Table 11: c-statistic, pseudo R2, and the change in pseudo R2 for subsets of the independent 
variables included in the RACM model for 20% in-hospital mortality 

Included variables c-statistic Pseudo R2 � Pseudo R2 

Age 0.79 0.0795  

Age, sex 0.7911 0.0799 0.0004 

Age, sex, LOS group,  0.8767 0.187 0.1071 

Age, sex, LOS group, urgency 0.9147 0.2205 0.0335 

Age, sex, LOS group, urgency, riskcat 0.9554 0.3045 0.084 

Age, sex, LOS group, urgency, riskcat, cancharlson 0.9625 0.338 0.0335 

Age, sex, LOS group, urgency, riskcat, cancharlson, transfer 0.9632 0.3402 0.0022 

Model Un-stratified,20% mortality N =  4,949,902 

 

Table 12: c-statistic, pseudo R2, and the change in pseudo R2 for subsets of the independent 
variables included in the RACM model for 100% in-hospital mortality 

Included variables c-statistic Pseudo R2 � Pseudo R2 

Age 0.8073 0.1114  

Age, sex 0.8084 0.112 0.0006 

Age, sex, LOS group,  0.8603 0.1693 0.0573 

Age, sex, LOS group, urgency 0.8997 0.2154 0.0461 

Age, sex, LOS group, urgency, riskcat 0.9491 0.3357 0.1203 

Age, sex, LOS group, urgency, riskcat, cancharlson 0.9548 0.3542 0.0185 

Age, sex, LOS group, urgency, riskcat, cancharlson, transfer 0.9555 0.3563 0.0021 

Model Un-stratified,100% mortality N =  6,053,177 
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5.4 Goodness of fit 
Tables 13 to 15 display Hosmer–Lemeshow deciles of risk and the observed and expected 
numbers of cases (and non-cases) of in-hospital mortality for the high-risk case group (80% 
of deaths), analysed using the RACM model, and the lower risk and the all-deaths groups. 
The tables are collapsed on deciles of estimated probabilities of death. Figures 4 to 6, 
accompanying the tables, show the percentages of in-hospital mortality for each decile of risk 
for both the observed data and the data predicted by the logistic regression model for the 
mortality outcomes. The predicted values for the high-risk group were derived from the 
RACM model, using principal diagnoses at the three character ICD-10-AM level (Appendix 
1). The predicted values for the other two groups were derived using principal diagnoses 
assigned to deciles of risk, as described above (Section 4.5.2). 

The Hosmer–Lemeshow test did not demonstrate good fit for any of the RACM models. 
However, as has been discussed previously, the Hosmer–Lemeshow goodness of fit method 
is sensitive to the very large sample sizes used here. Moreover, the RACM model does not 
include data transformations or allow for possible interactions between covariates—issues 
which were tackled when developing the ERM model. The tables and graphical plots of 
deciles of observed and expected risks show that the RACM model fit is closer for the deciles 
of higher risk than for the lower deciles, where the model seems to somewhat ‘over-call’ 
expected mortality (see tables 13 to 15). 

The goodness of fit for the ERM model is discussed in Section 5.7.1. 

Table 13: Hosmer–Lemeshow deciles of risk and the observed and expected numbers of cases (and 
non-cases) of in-hospital mortality for the high-risk group of deaths (using the RACM model) 

Decile of risk 
group Prob Obs 1 Exp1 Obs 0 Exp 0 Total

1 0.001 30 61.2 110,306 110,274.8 110,336

2 0.002 69 152 110,455 110,372 110,524

3 0.003 159 282.3 110,180 110,056.7 110,339

4 0.006 271 484.1 109,845 109,631.9 110,116

5 0.009 554 786.4 109,789 109,556.6 110,343

6 0.015 1165 1304.3 109,164 109,024.7 110,329

7 0.026 2412 2230.8 107,894 108,075.2 110,306

8 0.046 4111 3837.4 106,227 106,500.6 110,338

9 0.089 7655 7013 102,704 103,346 110,359

10 0.980 19620 19894.4 90,665 90,390.6 110,285

Note: Obs1 and Exp1 = expected cases; Obs 0 and Exp0 = expected non-cases, Hosmer–Lemeshow Chi2(8) = 396.37, p > 0.000 
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 Figure 4: Percentages of in-hospital mortality for each decile of risk for both the observed data 
and the data predicted by the logistic regression model for the high-risk group of cases 
accounting for 80% of in-hospital deaths 

 

Table 14: Hosmer–Lemeshow deciles of risk and the observed and expected numbers of cases  
(and non-cases) of in-hospital mortality for the lower risk group of deaths (using the RACM 
model) 

Decile of risk group Prob Obs 1 Exp1 Obs 0 Exp 0 Total

1 1 0 6 5.3 500,313 500,313.8

2 2 0 7 9.9 489,655 489,652.1

3 3 0 8 16.3 495,031 495,022.7

4 4 0.000 14 26.2 496,719 496,706.8

5 5 0.000 20 43.8 497,137 497,113.3

6 6 0.000 23 71.5 491,491 491,442.5

7 7 0.000 53 123.7 495,029 494,958.3

8 8 0.001 126 235.9 494,567 494,457.1

9 9 0.002 547 616.4 494,318 494,248.6

10 10 0.720 8324 7979.1 486,514 486,858.9

Note: Obs1 and Exp1 = expected cases; Obs 0 and Exp0 = expected non-cases, Hosmer–Lemeshow Chi2(8) = 171.29, p > 0.000 
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 Figure 5: Percentages of in-hospital mortality for each decile of risk for both the observed  
data and the data predicted by the logistic regression model for the lower risk group  
including the remaining 20% of in-hospital deaths 
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Table 15: Hosmer–Lemeshow deciles of risk and the observed and expected numbers of cases  
(and non-cases) of in-hospital mortality for the group including all in-hospital deaths (using  
the RACM model) 

Decile of risk group Prob Obs 1 Exp1 Obs 0 Exp 0 Total

1 0 8 7.3 605,391 605,391.7 605,399

2 0 12 16.4 606,090 606,085.6 606,102

3 0.000 21 30.5 604,450 604,440.5 604,471

4 0.000 26 55.4 612,694 612,664.6 612,720

5 0.000 49 99.9 600,665 600,614.1 600,714

6 0.001 100 203.2 602,952 602,848.8 603,052

7 0.001 259 469.1 604,648 604,437.9 604,907

8 0.004 924 1270.6 604,253 603,906.4 605,177

9 0.014 4021 4483.8 601,364 600,901.1 605,385

10 0.617 39754 38537.7 565,496 566,712.3 605,250

Note: Obs1 and Exp1 = expected cases; Obs 0 and Exp0 = expected non-cases, Hosmer–Lemeshow Chi2(8) = 376.26, p > 0.000 
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 Figure 6: Percentages of in-hospital mortality for each decile of risk for both the observed  
data and the data predicted by the logistic regression model for the group including all  
in-hospital deaths 
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5.5 Individual HSMRs and their 95% confidence 
intervals 
One of the three modes of presentation of HSMRs described in Section 2.9.1 is ‘league tables’. 
This section presents some results of our analysis in this format. Because of the large number 
of hospitals analysed, we have selected one peer group, A1, to illustrate the approach 
(equivalent tables of recalibrated risk-adjusted HSMRs for peer groups B1, C2 and D1 are in 
Appendix 2). 

Table 16 shows, for peer group A1, the observed and expected numbers of deaths, the 
HSMRs (after recalibration) and 95% confidence intervals, and the peer group rankings for 
the case groups including 80%, 20% and 100% of in-hospital deaths. Readers are reminded 
that these demonstration values have been recalibrated in order to protect the confidentiality 
of individual institutions. 

Results are arranged in ascending order of risk-adjusted HSMR for the high-risk group of 
cases (which includes 80% of in-hospital deaths). 
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The figures below provide a graphical representation of the HSMRs and ranks for the three 
case groups analysed, for peer group A1. The differences in rank were most marked between 
the analyses of the case groups including, respectively, 80% and 20% of in-hospital deaths. 
The HSMRs for the lower risk group were the most variable.  
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 Figures 7 and 8: HSMRs and ranks for peer group A1 hospitals 
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5.6 Caterpillar plots 
This section presents examples of the use of caterpillar plots to summarise HSMRs. As 
before, we have limited presentation to several peer groups, which is sufficient for the 
purposes of demonstration. In this section, we present plots of the hospitals in four peer 
groups for the high-risk case group accounting for 80% of all in-hospital deaths.  

Figures 9 to 12 display the variation of HSMRs in the peer groups A1, B1, C2 and D1. The 
95% confidence interval associated with each point estimate indicates the degree of 
uncertainty of the point estimate and is dependent on both the observed and expected 
number of deaths (the larger the observed and expected number of deaths the narrower the 
confidence intervals). The caterpillar plots allow for a quick visual display of the extent of 
between-hospital variability, and the degree of precision for each of the estimates using the 
confidence intervals. Those hospitals in which the confidence intervals do not overlap can 
generally be assumed to be different in terms of HSMRs. 

Differences in the distribution of HSMRs between peer groups might represent true 
differences in risk, but they might also be due to models and available data allowing 
incomplete adjustment of risk. It is certainly the case that casemix differs substantially 
between peer groups. Hence, as for other characteristics of hospitals, comparisons within 
peer groups may be more meaningful than those between peer groups, even after 
adjustment. 
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 Figure 9: Caterpillar plot of variation in point estimates in HSMR for peer group A1,  

80% of in-hospital mortality 
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 Figure 10: Caterpillar plot of variation in point estimates in HSMR for peer group B1,  

80% of in-hospital mortality 

 

0

50

100

150

200

250

300

350

400

450

H
S

M
R

1 6 11 16 21 26 31 36 41 46 51 56 61

Rank

HSMR 95% CI
Note 1: Size of circles represents casemix-adjusted separations using DRG cost-weightings.
Note 2: The width of the 95% confidence intervals depends on hospital size and number of observed deaths.
Note 3: 95% CI is not given where HSMR=0 (zero observed deaths).

Peer group C2 HSMRs using diagnoses responsible for top 80% of deaths

 



 

71 

 Figure 11: Caterpillar plot of variation in point estimates in HSMR for peer group C2,  
80% of in-hospital mortality 
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 Figure 12: Caterpillar plot of variation in point estimates in HSMR for peer group D1,  

80% of in-hospital mortality 

5.7 Funnel plots 
This section demonstrates the presentation of study data in the form of funnel plots. 
Compared with tables and caterpillar plots, funnel plots allow graphical information about a 
large number of hospitals to be presented in only a few figures. We illustrate the approach 
here by presenting information on peer groups A1, B1 and B2. Funnel plots for other peer 
groups are provided in Appendix 3.   

Figures 13 to 15 display the variation in HSMRs for the A1, B1 and B2 hospitals according to 
the expected number of deaths and the size of the institution (as assessed by the number of 
cost-weight adjusted separations). The position of the marker shows the HSMR versus the 
number of deaths predicted by the model. The size of the marker represents the size of the 
hospital, measured as casemix-adjusted separations. Each of the figures summarises results 
for one of the three case sets: high-risk diagnoses accounting for 80% of deaths; the lower risk 
diagnoses accounting for the remaining 20% of deaths, and all diagnoses.  

Funnel plots allow for quick visual detection of ‘out-lying’ institutions, which are 
represented as points outside the funnel. More than one peer group is shown in each of the 
figures, coded by colour.  
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 Figure 13: Variation in HSMRs according to the expected number of deaths and the size of  
the institution, peer group A1, B1 and B2, 80% of in-hospital mortality 
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 Figure 14: Variation in HSMRs according to the expected number of deaths and the size of  
the institution, peer group A1, B1 and B2, 20% of in-hospital mortality 
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 Figure 15: Variation in HSMRs according to the expected number of deaths and the size of  
the institution, peer group A1, B1 and B2, 100% of in-hospital mortality 

 

5.8 Model development 
The RACM model only includes untransformed values of variables and main effects. This is 
not necessarily the best way to model the data (see Section 4.8).  

Fractional polynomials suggested the best powers of age for the transformation of age were 
age (i.e. a linear term) and age cubed. The Akaike information criterion (AIC) reduced from 
266865.8 (80 df) to 266183.2 (79df) (p < 0.001). Table 17 displays the observed and expected 
deciles of risk for three different models: the standard RACM model, the full interaction 
model using the 50% developmental model data set (random sample of 50% of the 2005–06 
data) and the full interaction model using the validation data set (with the remaining 2005–
06 data). 
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Table 17: Observed and expected deciles of risk for 3 different models 

Model without interactions Full model with interactions 
Full model applied to 50% 

sample 

Decile Obs Exp 
sqrt((obs-

exp)^2/exp) Obs Exp
sqrt((obs-

exp)^2/exp) Obs Exp 
sqrt((obs-

exp)^2/exp)

1 29 67.9 4.7 2 8.6 2.25 4 3.8 0.08

2 64 167.8 8.0 18 32.3 2.52 8 15.0 1.80

3 164 315.5 8.5 72 89.5 1.85 46 41.7 0.67

4 302 558 10.8 185 221.4 2.45 101 105.6 0.44

5 631 926.5 9.7 504 531.5 1.19 251 261.9 0.67

6 1,418 1,560.4 3.6 1,178 1,221.4 1.24 609 611.5 0.10

7 2,654 2,653.1 0.0 2,640 2,500.7 2.79 1,259 1,259.7 0.02

8 4,874 4,491.9 5.7 5,030 4,897.5 1.89 2,573 2,453.7 2.41

9 9,171 8,112.5 11.8 9,511 9,507.4 0.04 4,755 4,746.8 0.12

10 21,918 22,371.4 3.0 22,306 22,435.7 0.87 11,109 11,177.4 0.65

   65.9 17.08  6.96

 

The model fit for the standard RACM model was Chi2 = 65.9, 8df, p < 0.001 and the fit 
increased substantially with the ERM model using the 50% 2005–06 validation sample data 
set (Chi2 = 6.96, 10df, p = 0.73). Not only does the ERM produce better fit overall, but the 
residual differences between observed and expected deaths are spread more evenly over risk 
deciles than when the RACM model is used (Table 17). Figure 16 demonstrates that that the 
observed and predicted proportions of mortality fit well for all deciles.  

HSMRs were calculated for the 80% mortality outcomes for the A1 hospital peer group. For 
the sake of comparison, the RACM model was re-run, placing the primary diagnoses in risk 
decile groups but otherwise leaving the model as is. HSMR plots are provided using the 
ERM model, the modified RACM model, and the RACM model as previously described 
(Figure 17).  
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 Figure 16: Observed and predicted proportions of mortality by deciles of risk 
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 Figure 17: HSMR plots using the ERM model, the modified RACM model, and the  
RACM model 
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5.9 Inclusion of SEIFA 
When the SEIFA index of socioeconomic status was included as a five-category variable in 
the standard RACM model, it was found to be a significant predictor of  
in-hospital mortality (LR test : Chi2 = 29.13, 4df, p < 0.001). However, the change in the 
pseudo R2 statistic was only marginal (from 0.2459 to 0.2460). The effect of increasing 
quintiles of SEIFA on the odds of in-hospital mortality compared with the odds for  
in-hospital mortality for the first SEIFA quintile are shown in Table 18. 

Table 18: Effect of increasing quintiles of SEIFA(a) on the odds of in-hospital mortality 

SEIFA quintile 
Odds 
ratio Std. Error z P LCI UCI 

Most disadvantaged 1.000 – – – – – 

Second most disadvantaged 1.029 0.016 1.86 0.064 0.998 1.061 

Middle quintile 0.992 0.017 –0.46 0.648 0.961 1.025 

Second most advantaged 0.971 0.017 –1.71 0.087 0.938 1.004 

Most advantaged 0.942 0.017 –3.39 0.001 0.911 0.975 

(a) Based on the ABS’s SEIFA 2001 Index of Relative Socio-economic Advantage and Disadvantage (IRSAD) score for the  
statistical local area of the patients area of usual residence (ABS 2004). 

5.10 Longitudinal analysis 
In addition to applying the RACM and ERM models to a single year of hospital separations 
data, we undertook a longitudinal analysis of data for that year (2005–06), the year before 
and the year after. The longitudinal analysis has been undertaken to demonstrate the 
feasibility of basing this approach on Australian data. 

As discussed in the literature review (see Section 2.7.2), longitudinal studies are of 
considerable importance for confirming the presence of systematic variations in mortality 
outcomes, and for assessing the extent to which a data source provides information on in-
hospital mortality, rather than ‘noise’.  

Reliance solely on cross-sectional comparisons of performance would miss patterns such as 
hospitals whose rates remained static although there was a general trend towards 
improvement, or hospitals whose results improved or deteriorated to an important extent 
over time, despite the absolute mortality rates for the hospitals not deviating enough form 
group means to attract attention on cross-sectional study. 

This section provides information on the method employed and the results of the analysis of 
data covering the 3–year period 2004–05 to 2006–07.  

We used a method based closely on that reported by Heijink (2008). This is a two-step 
analysis, outlined here and described fully below.  

The first step is logistic regression modelling. As before, this was done to reduce variation 
among hospitals due to different case profiles (i.e. risk adjustment). We used the same 
modelling approach used for the single-year study (i.e. RACM).  

The second step is two-stage multi-level logistic regression. This was done to explain 
remaining variation of risk-adjusted HSMRs within and between hospitals—especially 
variation over time.  

Following Heijink, we did this analysis on the high-risk (80%) case group. 
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5.10.1  Method 

Data 
This analysis uses data for hospital separations that occurred in Australia from  
1 July 2004 to 30 June 2007. As in the single-year analysis, the data were provided by the 
AIHW from the NHMD. 

Institution mapping 
A longitudinal analysis of this nature depends on tracking individual hospitals over time. 
Unfortunately, this is not as simple as it sounds. Hospitals merge, change ownership, change 
their names, and change from public to private and vice versa. No ‘map’ was available to 
track these changes. In the absence of an available map we made one to cover the 3–year 
period under study. 

We obtained from the AIHW website tables that listed, for each data year, hospital names, 
establishment identifiers and several other characteristics, including average available beds, 
peer group code and regional designation. We used these tables, in conjunction with 
establishment identifier codes in the NHMD data, to construct the map. Many hospitals were 
easy to map: names and establishment IDs remained identical over the 3 years. Many others 
had some differences, which were assessed carefully. Establishments for which mapping 
doubt remained were omitted from the analysis. Private hospitals were generally not 
identified separately in the NHMD, and were not in the tables, and could not be included in 
this part of the analysis.  

Of the 856 hospitals identified in the three data years, 736 were matched across all  
3 years and retained for the longitudinal analysis. Each of these hospitals was assigned a 
study identifier, which was used in this part of the analysis. 

Case selection, peer groups and modelling 
Exclusion criteria for years 2004–05 and 2006–07 were applied as for the single-year analysis 
described above (Section 4.5). Records meeting the following criteria were selected from the 
three annual files:  

1. hospital establishment identifier was one of the 736 that were mapped over the  
3 years 

2. Principal Diagnosis code was one of those in the high-risk group (These codes are listed 
in Appendix A1.) 

3. the hospital was in one of the peer groups A1, A2, B1, B2, C1, C2, D1, D2 or D3.  

These exclusions reduced the number of cases for analysis to 2,012,302.  

A logistic regression model for in-hospital mortality above was created using the following 
covariates: age, sex, length of stay, elective/emergency status, principal diagnosis, Charlson 
index and transfer status. Modelling followed the RACM method described above for the 
single-year analysis. Model coefficients were determined using the first year of data (2004–
05). These coefficients were then applied to each record in each of the data years 2004–05 to 
2006–07 to generate a probability of death. The sum of these values for all records belonging 
to a hospital gave the expected number of deaths for that establishment. This was done 
separately for each year. 
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HSMRs for each year were then calculated by dividing the observed number of deaths by the 
expected number of deaths for each hospital and for each year. An HSMR was calculated for 
each of the 3 years for 418 hospitals with a peer group of A1, A2, B1, B2, C1, C2, D1, D2 or 
D3. Overall HSMRs for each of these peer groups were also calculated (Table 19).   

Following calculation of annual HSMRs for these 418 hospitals, a two-stage multi-level linear 
regression model was developed in order to assess any systematic change in HSMRs over 
time, and also the within-hospital correlation of HSMRs over time.   

Multi-level models partition the variance of the data into fixed and random effects. Fixed 
effects for our models were the overall mean HSMR in 2004–05 and the decrease in HSMR 
for each of the following 2 years. Random effects were the overall variance in HSMRs across 
hospitals (denoted in the results as ‘random intercept for hospitals’), the variance in the 
slopes of HSMRs across time (‘random slopes for hospitals’) and the covariance (i.e. degree 
of correlation) between the random intercept and the random slopes.  

The correlation across time for hospitals was assessed using the intraclass correlation 
coefficient (ICC), which is defined as the ratio of the (level 2) between-hospital variance 
(random intercept for hospitals) and the total hospital variance (random intercept for 
hospitals plus the (level 1) within-hospital variance). A high degree of correlation indicates 
that compared with between-hospital variation, within-hospital variation across time is 
small.  

Observed and model-predicted HSMRs were also plotted across time to allow visual 
assessment of the data. The model-predicted HSMRs incorporate the fixed and random effect 
components of the model, but not the unexplained (level 1) within-hospital variation (i.e. 
residual variation not explained by the modelling). The model-predicted HSMRs can 
therefore be thought of as depicting the explained (i.e. systematic) variance in the HSMRs.   

5.10.2  Results 
The 3–year analysis was done to demonstrate an approach to longitudinal analysis of in-
hospital mortality, and to examine the adequacy of Australian hospital morbidity data for 
this purpose.  

The overall HSMRs for the whole data for the first year (2004–05) is, by definition,  
100 (95% CI= 99–101). The overall HSMR declined to 98.6 (95% CI= 97–100) for the second 
year (2005–06) and to 95.5 (95% CI= 94–97) for the third year (2006–07).  

The annual mean HSMRs for each peer group are presented in Table 19. Because the logistic 
regression modelling was built using data from all hospitals combined (rather than being 
stratified by peer group), the first-year HSMRs are not set to 100—revealing differences 
between the groups. The effect of applying a model derived from all cases to very different 
types of hospital is particularly evident for peer group A2, WCHs.  

Looking across the rows, it can be seen that there was a tendency for HSMRs to decrease 
over time for peer groups A1, A2, B1, C2 and D2. 

The results of the multi-level modelling of HSMRs are shown in Table 20. Although HSMRs 
for most groups decreased across time, the only significant decreases in HSMR after 2004–05 
were for peer group A1 in 2006–07 (–6.3, 95% CI = –9.9 to –2.6, p < 0.001) and for peer group 
C2 in 2006–07 (–18.0, 95%CI = –35.6 to –0.5).  

The ICC values are high for most of the peer groups, indicating that within-hospital 
variation between the 3 years is small in relation to between-hospital variation.  
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Table 19: Mean HSMRs (and 95% confidence intervals) by financial year and peer group 

Financial year 

Peer group 2004–05 2005–06 2006–07 

A1 104.3 (98.8,109.7) 102.6 (98.0, 107.1) 98.0 (93.0, 103.0) 

A2 201.3 (87.8, 314.8) 168.5 (74.3, 262.8) 167.0 (72.5, 261.6) 

B1 80.4 (67.2, 93.5) 78.1 (63.9, 92.4) 77.4 (65.0, 89.9) 

B2 96.2 (80.4, 112.1) 90.7 (76.7, 104.6) 96.2 (82.6, 109.8) 

C1 68.6 (55.3, 81.9) 75.8 (60.4, 91.2) 68.4 (54.1, 82.7) 

C2 107.0 (86.5, 127.5) 96.8 (83.9, 109.7) 88.9 (78.3, 99.6) 

D1 133.8 (111.7. 156.0) 133.0 (117.3, 148.7) 136.6 (122.0, 151.2) 

D2 119.9 (102.8, 136.9) 120.9 (102.3, 139.4) 108.0 (93.5, 122.5) 

D3 98.2 (71.0, 125.4) 100.6 (84.1, 117.1) 106.3 (80.5, 132.1) 

 
Another way of presenting this information is provided in Figures 18 to 20.  

The pair of charts in each row represents one of the peer groups included in the longitudinal 
part of the study. The thick line in each chart presents the peer-group mean HSMRs for each 
year (like the values in Table 19). Each of the dashed lines represents one of the hospitals in 
the peer group. The chart on the left in each pair (‘Observed’) shows the risk-adjusted 
HSMRs as calculated by applying the logistic regression model based on 2004–05 data to this 
year and to each of the other years. The other chart in each pair (‘Predicted’) displays the 
risk-adjusted HSMRs predicted by the multi-level model.  

The more linear each hospital line is across the 3 years, the less variation there is within that 
hospital across time. As a consequence, the relative contribution of between-hospital 
variation in HSMRs to the total variation is higher and, by definition, the ICC is therefore 
higher too. 

The difference in HSMRs between the two charts demonstrates the amount of residual 
variation in the HSMRs that cannot be explained by the multi-level models. Note that the 
vertical scale differs between charts. 

These results are generally similar to those reported by Heijink et al. (2008), whose approach 
we followed. Like them, we found a downward trend in overall risk-adjusted HSMR, and 
that variation was mostly between-hospitals, not within hospitals.  

The main difference between Heijink et al. (2008) and our analysis is their examination of a 
wider range of covariates as predictors of in-hospital mortality. The satisfactory performance 
of the method when applied to Australian hospitals data suggests that it will be fruitful to 
extend our analysis in a similar way. Exact replication is unlikely to be feasible, because 
some of the covariates used by Heijink et al. may not have direct Australian equivalents, due 
to differences in health system organisation and health information. However, data on some 
other potential covariates may exist in Australia.  

It should be recognised that that these are results of a demonstration analysis. Although they 
offer support for the view that Australian hospital morbidity data provide an adequate basis 
for calculation of indicators of in-hospital mortality, caution should be taken not to over-
interpret these results, which have some limitations.  
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The analysis presented here is based on only 3 years of data. That was enough to allow us to 
test the extent to which Australian hospitals data provide ‘signal’ rather than ‘noise’ in 
hospital-level HSMRs. Subsequent analyses will benefit from the use of data for a larger 
number of years.  

The analysis presented here is for only one of the three indicators defined in Section 4.5.2: 
namely the indicator restricted to the group of Principal Diagnoses associated with the 
highest number of in-hospital death, and which together account for 80% of all in-hospital 
deaths.  

As explained above, the lack of a ‘map’ led to the omission of some public hospitals. Many 
private hospitals could not be included, due to the lack of hospital-specific identifiers in the 
NHMD.  
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Figure 18: Observed and predicted hospital-specific and group mean HSMRs by financial year 
and peer group: peer groups A1, A2, B1 and B2 
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Figure 19: Observed and predicted hospital-specific and group mean HSMRs by financial year 
and peer group: peer groups C1 and C2 
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 Figure 20: Observed and predicted hospital-specific and group mean HSMRs by financial 
year and peer group: peer groups D1, D2 and D3 
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6 Discussion 

6.1 Can we produce in-hospital mortality indicators 
using Australian administrative data? 
This study demonstrates an approach to specifying a set of indicators of in-hospital mortality 
and calculating values for them using currently available Australian administrative data, 
from the NHMD. The analytic approach was based on findings of a review of relevant 
literature. 

The work demonstrates the technical feasibility of producing indicators of in-hospital 
mortality now using national data. In particular, the section based on longitudinal analysis of 
3 years of data provides support for the position that current Australian morbidity data are 
largely of adequate quality to support this type of use.  

The particular indicators specified here are not the only ones possible.  However, they 
exemplify major types of indicators: namely those focusing on in-hospital mortality among 
relatively high-risk cases, those focusing on in-hospital mortality among low-risk cases, and 
an overall group including all cases and in-hospital deaths. They are general-purpose 
indicators, rather than indicators specific to particular types of diagnosis, treatment or 
service. They should be applicable to a wide range of hospitals, though probably less so for 
some (e.g. specialised hospitals with an atypical casemix, such as WCHs). 

The present study was based on current holdings of Australian hospital separation data, and 
this was considered to provide a sufficiently robust basis for the current program of work. 
Our assessment of the literature, as reviewed in Section 2.4.2, led us to conclude that it may 
be preferable to include deaths occurring soon after discharge from hospital, and that death 
within 30 days of discharge is a suitable criterion. At the national level, this data set has not 
been routinely linked to other major national databases such as the National Death Index, 
although several jurisdictions have undertaken such linkages at state level demonstrating its 
feasibility. As we have stated, we were not able to apply this aspect of indicator definition 
because we did not have access to linked hospital separations and deaths data, but it is likely 
that this will become feasible in the near future.  

The following sections present further discussion of these and other points raised by this 
project.  

Model assessment 
The model parameters generated by applying the RACM (the de facto international standard 
logistic regression model for in-hospital mortality) to Australian data are very similar to 
those reported in the international literature. The model shows good discrimination (in terms 
of the c-statistic, 0.87 for the high-risk 80% mortality group). As reported elsewhere, the 
explanatory power of the model, as indicated by pseudo  
R2 values, although seemingly modest (0.24 for the 80% set), were consistent with the 
international literature and typical for logistic regression models that compare the fitted 
model with the null model, in which none of the variation is explained. (This differs from the 
situation with linear regression, where comparison is with the saturated model, in which 
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100% of variation is explained, and where higher R2 values are often obtained.) The c-statistic 
and pseudo R2 values were higher for the 20% model (0.96 and 0.34, respectively) and the 
100% model (0.95 and 0.35, respectively). In these sets, subjects had been grouped according 
to deciles of mortality risk—based on primary diagnosis. Although this technique guarantees 
an increase in discrimination and explanatory power, the change in pseudo-R2 values and c-
statistics with the inclusion of the deciles were similar to the changes in these statistics with 
the inclusion of the primary diagnosis groups for the 80% models. 

The Hosmer–Lemeshow test did not demonstrate good fit for any of the RACM models. 
However, as has been discussed previously, the Hosmer–Lemeshow goodness of fit method 
is sensitive to the very large sample sizes used here, and the RACM model is not 
sophisticated. The graphic plots of deciles of observed and expected risks show that the 
RACM model fit is closer for the deciles of higher risk than for the lower deciles, where the 
model seems to over-predict expected mortality. This exemplifies the problems of fitting 
graduated risks in relation to outcomes that can have only one of two values: alive or dead 
(Chassin et al. 1996).  

The unevenness across the deciles of risk is likely to be much less important for large 
hospitals, with large volumes of patients and larger number of both observed and expected 
deaths, than for smaller institutions. Indeed, the caterpillar plots for the  
A1 peer group hospitals show HSMRs that vary steadily across a substantial range, and 
demonstrated that there are large hospitals with HSMRs with narrow confidence intervals 
that have mortality rates that are significantly below, or significantly above, the national 
average for that peer group. But the unevenness, which is more marked for peer groups 
including hospitals with lower case volumes, further confirms the inappropriateness of 
simply rank ordering the hospitals from end to end, rather than looking for outlier groups 
and institutions.  

Although the HSMRs for the B1 peer group hospitals are within realistic boundaries, those 
for the small hospitals in C2 and D1 are hard to interpret. The small number of both 
observed and expected deaths generates HSMRs in those groups that range from 0 to over 
300—some with very wide confidence intervals.  

Analysis by peer group 
Unadjusted HSMRs should be expected to differ between hospitals because of their different 
casemix. Adjustment models, such as those presented in this report, do much to overcome 
differences in casemix, but institutional level differences remain. Hospitals have been 
divided into peer groups to enable comparisons of like with like. Peer groups may also 
provide a useful basis for assessment of in-hospital mortality. The analyses presented in this 
report are based on overall models—based on all hospitals. It would also be possible to make 
peer-group-specific models, at least for the groups that treat sufficiently large numbers of 
patients. In any case, interpretation of HSMRs across peer-group boundaries should be 
undertaken cautiously. 

Small hospitals 
The dilemmas posed by small hospitals are substantial. In-hospital death is a relatively rare 
event in many of those settings, and mortality rates are likely to be subject to many 
extraneous influences related to the casemix of those hospitals, and to opportunities for end-
of-life care in rural and remote regions.  
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The most straightforward way to deal with small hospitals is to exclude them from mortality 
monitoring: setting some mortality rate criteria (e.g. at least 50 deaths in any one of the three 
previous financial years, or some other mortality threshold yet to be determined). Other 
simple approaches to dealing with sparse data include enlarging the reporting period for 
small hospitals (e.g. calculate HSMRs for a rolling 2– or 3–year period) or reporting HSMRs 
only for clusters of small hospitals. If none of these is deemed sufficient, then analysis using 
a Bayesian method that creates shrunken estimates—i.e. estimates of the HSMR which are 
shifted towards a value obtained from known information about other hospitals (known as a 
‘prior’ probability)—could be developed for consideration by the Commission.  

Refined risk-adjustment model (ERM) 
This discussion has so far revolved around findings based on the de facto international 
standard risk-adjustment model (RACM). The modest fit of this model prompted us to 
consider whether it could be improved. We developed a more refined risk-adjustment model 
(labelled the ERM model in this report) that allowed for the possibility that some variables, 
such as age, were not simply linear in relation to mortality risk. The model also allowed for 
interactions between the modelled variables (we found significant interactions for all the 
major variables modelled). We acknowledge helpful advice from Professor DW Hosmer in 
the course of this work. 

The ERM model displayed a number of technically more acceptable characteristics. The 
model fit was a substantial improvement over the RACM model, and the residual differences 
between observed and expected mortality were spread much more evenly across the risk 
deciles. 

At this point, we have not gone on to analyse all peer groups for every combination of 
mortality using the ERM modelling, and the ERM analysis is provided for the sake of 
comparison. Technically, it is a superior model and the improvements in model fit justify its 
further development. If, however, there is a concern that any Australian study should follow 
work done internationally, then the Commission may want to continue with the RACM 
model, despite its poorer performance. On a practical note, the large number of interactions 
that are computed within the ERM model make major demands on computing power. 
Interested groups lacking access to powerful desktop computers can expect long processing 
times to compute the ERM models.  

SEIFA and other factors 
The finding that a measure of social deprivation (SEIFA) did not add substantially to the 
discriminatory power of the risk-adjustment modelling is ambiguous. It might reflect 
somewhat flatter social gradients within the Australian population than in settings in which 
socioeconomic variables have been found to be influential—at least in relation to access to 
health care. However, it could also reflect insensitivity of SEIFA to relevant aspects of 
deprivation or other social determinants of health. Conversely, it could be the case that 
variables in our model took some account of any such differences. Aboriginal and Torres 
Strait Islander peoples, as a group, have well-known excess early mortality and other 
characteristics of poor health status. We did not examine the practicability of examining this 
subgroup separately in the present study. Although it would be possible to make such an 
examination, we anticipate that relatively small case numbers and uncertain identification of 
Indigenous status in the NHMD would be important constraints.  
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Longitudinal analysis 
We demonstrated the feasibility of longitudinal analysis of in-hospital mortality in Australia 
using NHMD data for 3 years. Analysis showed that most of the variation in HSMRs was 
between hospitals, not within hospitals, suggesting sufficient data quality and stability in 
hospital specific HSMRs to provide a basis for indicators.  

The results presented for the 3–year analysis show a modest decline in risk-adjusted 
mortality over a 3–year period. There is some very tentative indication that this kind of 
pattern may be emerging elsewhere (e.g. Heijink et al. 2008, Kelman and Friedman 2007). 
Much more detailed work needs to be done to ensure that the trend is not an artefact of a 
number of different factors; for example, of coding changes (between and within 
jurisdictions or individual institutions), a reflection of the changing demography of hospital 
populations (hospital populations are not simply representative of populations as a whole), 
or an outcome of changing locations of places of death. Analysis using additional years of 
data will be a stronger basis for assessing trends. But the possibility remains that the trend is 
real. If so, it might be the case that an increased emphasis on hospital safety is beginning to 
have a demonstrable effect on hospital mortality, and is possibly of sufficient interest to 
warrant further study. 

Methods of presentation 
We have demonstrated three forms of presentation of HSMRs: tables, caterpillar plots and 
funnel plots. Each has distinct strengths and limitations. 

Tables provide ready access to specific values for an institution or a group of institutions. 
However, the overall pattern of HSMRs is difficult to assimilate from a large table. Also, 
tabulated data, ranked by HSMR values, encourages unhelpful and statistically meaningless 
over-interpretation of the rank position of hospitals whose HSMR values do not differ 
significantly. For this reason, they are not preferred as a method for public dissemination of 
results. 

Caterpillar plots provide a good overview of the range of HSMRs and of the associated 
confidence intervals. HSMRs for a population of hospitals tend to include many values in a 
‘middle range’: not different from one another to a statistically significant extent (e.g. Figure 
12). Caterpillar plots show this property rather clearly, especially if they are drawn in a way 
that gives at least as much visual emphasis to the confidence intervals as to the point 
estimates. They also show outliers, if present.  

Funnel plots allow the identification of those small numbers of hospitals that are true 
outliers, with mortality results that are either much worse, or much better, than most 
hospitals. One limitation is that they do not facilitate comparison of non-outlier hospitals—a 
matter likely to be of interest to people responsible for each charted institution. Funnel plots 
are, perhaps, more difficult to interpret than caterpillar plots.   

We conclude that although good use can be made of all three methods of presentation, the 
choice for public reports (if made) should be between the two forms of chart.  

We suspect that many members of the public may find caterpillar plots easier to interpret 
than funnel plots. We are not aware of empirical data on this matter (though a study could 
certainly be done).  
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6.1.1 Indicators specified in the project 
This report presents the results of a proof-of-concept project on the development of  
in-hospital mortality indicators based on existing Australian administrative data. 

The three indicators specified in this study are intended to represent types of indicator 
described in the international literature, while also reflecting a pragmatic response to 
characteristics of the National Hospital Minimum Dataset and to the short time available for 
this project. The three indicators specified in this project are: 

Indicator 1: High-risk group. This was specified as the Principal Diagnoses that accounted 
for 80% of in-hospital deaths in Australian hospitals, and had the highest 
number of cases of in-hospital mortality, in 2005–06.  

Indicator 2: Lower risk group. This includes all Principal Diagnoses that are not included 
in the first indicator, and accounted for 20% of deaths. 

Indicator 3: Indicator 3 includes all principal diagnoses. Thus, it includes all cases and all 
deaths. 

The first of the three is an example of an indicator focusing on relatively high-risk conditions. 
Overall, the group of 68 Principal Diagnosis codes included in it account for less than one-
fifth of all cases, but the cases selected by this criterion include four-fifths of all deaths in 
hospital. This type of indicator (i.e. including 80% of in-hospital deaths) is quite common in 
the literature. 

Conversely, the second is an example of an indicator focusing on a lower risk set of 
conditions—i.e. diagnoses which, as a group, accounted for over 80% of cases, but  
20% of deaths.   

The third indicator includes all cases and all deaths. 

Apart from Principal Diagnosis, we applied a single set of case inclusion criteria throughout 
the project. These are specified in Section 4.5.1. They are similar to those reported by other 
recent work of similar type (e.g. CIHI 2007, Heijink et al. 2008). 

Table 21 provides a demonstration of how the three generic indicators specified in this report 
could be applied. In this instance, specific indicators are framed in terms of a generic 
indicator and a hospital peer group. A similar approach could, in principle, be applied to 
subsets of separations grouped in other ways. Examples are the types of diagnosis, types of 
service and types of procedures. However, formal statistical assessment of any such groups 
is necessary before practical feasibility can be assured. The large number of possible 
variations goes beyond the scope of this report. A cautionary observation is that this 
approach is limited by the (fortunately) relatively low probability of most types of admitted 
cases ending as an in-hospital death. 

Although not done in this project, it is technically possible to produce summary HSMR 
values for regions, jurisdictions, or other groups of cases, in much the same way as peer 
group summaries were produced in this project (see Table 19).  
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Table 21: Application of derived indicators to hospital peer group 

Indicator Definition Peer group description 

Indicator 1a Diagnoses that account for 80% of  
in-hospital deaths in peer group A1 
Australian hospitals (high risk) 

Major city hospitals with >20,000 acute casemix-adjusted 
separations and Regional hospitals with >16,000 acute casemix-
adjusted separations per annum 

Indicator 1b Diagnoses that account for 80% of  
in-hospital deaths in peer group B1 
Australian hospitals (high risk) 

Major city acute hospitals treating more than 10,000 acute 
casemix-adjusted separations per annum 

Indicator 1c Diagnoses that account for 80% of  
in-hospital deaths in peer group C1 
Australian hospitals (high risk) 

Medium acute hospitals in Regional and Major city areas treating 
between 2,000 and 5,000 acute casemix-adjusted separations 
per annum, and acute hospitals treating <2,000 casemix-
adjusted separations per annum but with >2,000 separations per 
annum 

Indicator 1d Diagnoses that account for 80% of  
in-hospital deaths in peer group D1 
Australian hospitals (high risk) 

Small Regional acute hospitals (mainly small country town 
hospitals), acute hospitals treating <2,000 separations per 
annum, and with less than 40% non-acute and outlier patient 
days of total patient days 

Indicator 2a Diagnoses that account for 20% of  
in-hospital deaths in peer group A1 
Australian hospitals (high risk) 

Major city hospitals with >20,000 acute casemix-adjusted 
separations and Regional hospitals with >16,000 acute casemix-
adjusted separations per annum 

Indicator 2b Diagnoses that account for 20% of  
in-hospital deaths in peer group B1 
Australian hospitals (high risk) 

Major city acute hospitals treating more than 10,000 acute 
casemix-adjusted separations per annum 

Indicator 2c Diagnoses that account for 20% of  
in-hospital deaths in peer group C1 
Australian hospitals (high risk) 

Medium acute hospitals in Regional and Major city areas treating 
between 2,000 and 5,000 acute casemix-adjusted separations 
per annum, and acute hospitals treating <2,000 casemix-
adjusted separations per annum but with >2,000 separations per 
annum 

Indicator 2d Diagnoses that account for 20% of  
in-hospital deaths in peer group D1 
Australian hospitals (high risk) 

Small Regional acute hospitals (mainly small country town 
hospitals), acute hospitals treating <2,000 separations per 
annum, and with less than 40% non-acute and outlier patient 
days of total patient days 

Indicator 3a Diagnoses that account for 100% of  
in-hospital deaths in peer group A1 
Australian hospitals (high risk) 

Major city hospitals with >20,000 acute casemix-adjusted 
separations and Regional hospitals with >16,000 acute casemix-
adjusted separations per annum 

Indicator 3b Diagnoses that account for 100% of  
in-hospital deaths in peer group B1 
Australian hospitals (high risk) 

Major city acute hospitals treating more than 10,000 acute 
casemix-adjusted separations per annum 

Indicator 3c Diagnoses that account for 100% of  
in-hospital deaths in peer group C1 
Australian hospitals (high risk) 

Medium acute hospitals in Regional and Major city areas treating 
between 2,000 and 5,000 acute casemix-adjusted separations 
per annum, and acute hospitals treating <2,000 casemix-
adjusted separations per annum but with >2,000 separations per 
annum 

Indicator 3d Diagnoses that account for 100% of  
in-hospital deaths in peer group D1 
Australian hospitals (high risk) 

Small Regional acute hospitals (mainly small country town 
hospitals), acute hospitals treating <2,000 separations per 
annum, and with less than 40% non-acute and outlier patient 
days of total patient days 
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6.2 How might in-hospital mortality indicators be 
used at different levels in Australia? 
Countries that use in-hospital mortality indicators do so at different levels and for different 
purposes. For example the CIHI publishes HSMR trends by health region and hospital. The 
results are designed to be used by hospitals and health regions to monitor and understand 
their trends over time. An example of reporting of HSMRs by region is presented in Figure 
21.  

 

  

 Figure 21: Regional HSMR reporting by the Canadian Institute for Health  
Information (Taken from the report ‘HSMR: a new approach for measuring  
hospital mortality trends in Canada.’CIHI 2007) 
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In Australia, in-hospital mortality indicators could be presented in a similar manner to that 
already used by the Canadians and others. The method of presentation will depend on the 
use to which the HSMRs are to be put. But, at every point, the HSMRs are always best 
considered as the starting points for further investigation rather than as definitive measures 
of a hospital’s standing. 

6.3 Are the in-hospital mortality indicators valid and 
reliable? 
Validity refers to the extent to which a measurement truly measures what it is intended to 
measure.  

If in-hospital mortality, per se, is the subject of interest, then the validation of indicators of the 
type specified in this report is relatively straightforward. Death is usually a  
well-defined event, though ventilators and other devices can complicate assessment. ‘In-
hospital death’ is amenable to definition, though there is some room for ambiguity (e.g. how 
to treat cases of people who died while at a hospital, but had not been formally admitted, or 
cases where a person died before reaching a hospital, but was certified as dead after 
arrival?). However, the main issues are whether the available data sources are complete and 
reliable. These are amenable to study.  

If hospital quality and safety is the subject of interest then the validation of the indicators is 
much more complicated. As discussed in Section 2.8.2, safety and (especially) quality are 
complex abstractions, which are difficult to define and measure.  

The specific issue of the adequacy of administrative hospital separations data for risk 
adjustment could be subjected to formal study, along the lines of Aylin et al. (2007). 

Reliability refers to the extent that a measurement method, if applied more than once under 
the same conditions, will give the same result. Repeated measurement of the same hospitals 
is emerging as a basis for assessing the reliability of measurements of in-hospital mortality 
(e.g. Heijink et al. 2008). This is based on the assumption that the true risk of in-hospital 
mortality in most hospitals is not likely to vary much from year to year, after adjustment for 
a small set of the characteristics of cases and provided that case numbers are sufficient to 
prevent small chance fluctuations in number of deaths from dominating results.  

In this project, the 3–year analysis of in-hospital mortality, using indicator 1 (a relatively 
high-risk group of cases) produced the reassuring finding that  
within-hospital variation of HSMRs over the 3 years accounted for a generally low 
proportion of the total HSMR variation. In line with expectation, this was most true for 
groups of relatively large hospitals. Further work should be done to extend such analysis to 
other years, and other ways of selecting and grouping hospitals and cases.   
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6.3.1 Limitations 

Mapping public hospitals over time 
As discussed in Section 5.8.1 for the longitudinal analysis, a map was not available to track 
individual hospitals over time. We were able to develop a map for the purposes of this 
project; however, we were not able to include some hospitals (notably private hospitals) or to 
map some public hospitals. A map will be necessary for further longitudinal studies. 
Mapping is implicit in ongoing data linkage systems that include hospital separations data. 

Problem of private hospitals 
Private hospitals were largely excluded from this project, because they are not  
well-identified in the data source available to us (the NHMD). Although all records are 
marked as to whether the patient was in a private hospital, in many cases the information 
does not enable the private hospital cases to be grouped according to hospital, which was 
necessary for this project.  

Limitations of time for project 
The present project was undertaken in a short period of time. Although this did not present 
too great a challenge for the literature review, it did present significant challenges in the 
modelling aspects of the project. As indicated in Section 6.1, the long processing times to 
compute the models chosen for application had an impact on our ability to carry out much of 
the internal validation work necessary for these types of activities. With more time, we could 
have tried variations of indicators, applied them to hospitals grouped in additional ways, 
and done further development and evaluation of risk-adjustment models. It also ruled out 
time-consuming aspects of a more ideal study, such as attempting to obtain person-linked 
linked hospital and mortality data. Time constraints also had an impact on our ability to 
check the reliability and validity of the construction of our institutional map. We were also 
unable to fully explore the potential of longitudinal analysis. 

6.4 Presentation and use of indicators of  
in-hospital mortality 

6.4.1 How should in-hospital mortality indicators be presented? 
In-hospital mortality indicators were presented in three different ways in the present report: 
as ranked tables, as caterpillar plots and as funnel plots. It is not possible to state explicitly 
what the best method of presentation is because any method will be governed by a number 
of factors including the purpose of the reporting, whether the material will be in the public 
or private domain, and the intended audience (experts or novices). 

The main Australian example of publicly available hospital-specific reports including 
information on in-hospital mortality is from Queensland, where ‘Measured Quality’ reports 
are available via the Internet (e.g. 
<http://www.health.qld.gov.au/quality/measured_quality/2004/bay_redl.pdf>. These are 
extensive reports containing a great deal of information on many aspects of hospital 
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performance. The mortality data in the reports is presented as numerical values in tables, 
with peer-group values for comparison and use of symbols to indicate differences of 
statistical significance, and colour to mark values assessed to be outliers.  

One of the specified outcomes for the National Indicators project is to ‘enable the 
Commission to report publicly on the state of safety and quality’. From this we are able to 
assume that at least some in-hospital mortality indicators, if produced, should be presented 
in the public domain. With this assumption in mind we recommend that primary (see below) 
national in-hospital mortality indicators be publicly presented, in the main, as caterpillar 
plots. Caterpillar plots have the advantage of simplicity compared with funnel plots and are 
also less likely to encourage over-interpretation of small and non-significant differences than 
presentation in simple ‘league tables’. 

Caterpillar plots can be constructed and drawn in a range of ways, some of which will be 
more successful than others in communicating information on in-hospital mortality. We have 
provided some examples of ways to construct caterpillar plots to enable consideration of this 
issue (Appendix 4).  

Further consideration of the method of presentation will be required when considering levels 
of disaggregation of HSMR analysis and presentation. Inclusion of numerous hospitals (at 
least 10 or so; preferably 20 or more) is needed to produce a plot recognisable as a caterpillar 
plot. Presentation of HSMRs concerning smaller groups of hospitals could follow the 
methods adopted by the CIHI (2007) (see, for example, Figure 21). 

6.4.2 How should in-hospital mortality indicators be used in 
Australia? 
As discussed in the conclusion to the literature review (Section 2.10), we recommend that in-
hospital mortality indicators be used as screening tools, rather than being assumed to be 
definitively diagnostic of poor quality and/or safety. A screening tool is a signalling device. 
It is intended to signal that a problem may exist and that further detailed investigation is 
required.  

6.5 What are the methodological obstacles to 
producing mortality indicators in Australia now? 

6.5.1 Model checking and refinement 
The models used in the project (RACM and ERM) will benefit from further scrutiny and 
refinement. We think that the general analytic approach is satisfactory, but there is room for 
improvement in its details. The ERM model demonstrates the possibility of improving on the 
RACM model. There may be potential to improve on the current ERM model, though we did 
not have sufficient time to exploit this possibility. Likewise, we have demonstrated the 
approach when applied to general-purpose indicators, including one (the high-risk set, 
including 80% of in-hospital deaths) that is now common in the international literature. 
There has not been an opportunity in the present project to explore the performance of the 
approach on indicators specified in other ways (there is an almost limitless number of 
possible ways).  
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We think that data in the NHMD offer potential to develop models that improve further on 
the already substantial improvement of the ERM model over the RACM model. For example, 
probability of in-hospital death is predicted better by some four- and five-character principal 
diagnosis codes than by their parent three-character codes, as used in this project. The extent 
of the potential improvement is not yet known, nor whether the gains in model performance 
would outweigh the added computational burden of analysis. Other potential enhancements 
include inclusion of additional socio-demographic characteristics (such as Indigenous status) 
and peer-group specific analysis.  

Better understanding of some aspects of the data might also make a useful contribution. For 
example, ‘admission’ to hospital is a complex concept, particularly for emergency cases, and 
there are differences between hospitals in the point at which a patient is recognised as 
having been admitted. Such differences could influence whether certain cases involving 
death soon after arrival at a hospital are recorded in the NHMD.  

Of great interest is the increased precision that may result from the inclusion in the models of 
national level coding of variables to show whether secondary diagnoses recorded for a case 
were present on admission (known as C-codes in Victoria). Risk adjustment is intended to 
adjust for patient-level variation in risk present at the point of admission, not for adverse 
events and other problems that occur during hospital stays. The latter should be sought out 
and analysed—not included in risk adjustment. Comparisons of the precision of risk-
adjustment models with and without present-on-admission codes, and the impact of that 
coding on HSMRs will generate considerable interest locally and nationally, and will be a 
major contribution to the further development of measures of hospital safety. 

6.5.2 Consultation 
Consultation concerning indicators of in-hospital mortality is required with technical experts 
and stakeholders. Engaging key stakeholders in the finalisation of a ‘standard Australian 
method’ for producing in-hospital mortality ratios has the potential to improve on the 
methodological work reported here. An important step is to consult with state agencies and 
hospital groups: can they provide evidence of jurisdiction-level (or hospital-level) data issues 
that might influence findings and can be taken into account in models or risk adjustment? 
For instance, we have excluded records that were designated neither as elective nor as 
emergency. This third category may have different meanings in different jurisdictions. 
Because omission of palliative-care cases forms part of the approach that we have taken, 
possible differences in identification of such cases between jurisdictions or between hospitals 
would also benefit from scrutiny. 

6.5.3 Suggested improvements to data collections 
One of the National Indicators project objectives is to ‘Enable the Commission to advise 
Ministers on whether existing reporting processes and collections should be continued, 
enhanced or replaced.’ The NHMD has been demonstrated—at least in the context of this 
report—to be adequate for producing in-hospital mortality indicators. However, a small 
number of enhancements of the NHMD would contribute greatly to the usefulness of the 
NHMD for this, and other, purposes. 
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Data linkage 
There are two aspects of data linkage that are particularly relevant to the production of in-
hospital mortality indicators. The first is internal linkage within the NHMD and the second 
is external linkage of the NHMD with the National Death Index. We consider both forms of 
linkage to be vital enhancements to the NHMD to enable more valid and reliable in-hospital 
mortality indicators to be produced in Australia. 

Variation in definitions and practices concerning hospital admission also has potential to 
influence measured in-hospital mortality. An argument akin to that concerning inclusion of 
deaths soon after discharge could be made for the inclusion of cases in which death occurs at 
a hospital, but before formal admission. Whether this would have an important effect on 
results is not known, but warrants investigation.   

Internal linkage 

At the present time, separations within the NHMD are not internally linked by person. 
Individuals—some with serious and persisting conditions—are likely to experience more 
than one episode of in-hospital care within a period covered by a study of in-hospital 
mortality. Without the ability to link related separations, it is not possible to be sure whether 
a person whose episode of hospital care ended with transfer to another hospital, or with a 
‘statistical type change’, died during the next episode of inpatient care. Even a person who 
separates with discharge home might have been re-admitted soon after, with the possibility 
of fatal outcome of that episode. We are unable to take these factors into account when 
modelling because of the lack of internal linkage in the National Hospital Minimum Dataset 
to group the separations belonging to an individual patient. 

External linkage 

The second role of data linkage relevant to this type of work is linkage between hospital 
records and death registers (i.e. the National Death Index). This is necessary to enable studies 
that include deaths soon after discharge (i.e. to assess 30–day mortality).  

Timeliness of availability of data 
Reasonable expectations for timeliness of national indicators based on hospital inpatient data 
are not met at present. Although case records are generally processed, coded and accessible 
at state or territory level within a few months of separation, the NHMD file is released only 
annually, and records in it are from 1–2 years old by the time they become available for use. 
This prompts the question: can hospital morbidity data be made available more rapidly and 
frequently for purposes such as reporting indicators of hospitalised mortality? 

Investigations into the feasibility of a more timely release of NHMD data—perhaps 
quarterly—should be considered.  

Validation of coding 
Mortality indicators depend on the reliability and quality of coding of hospital records. The 
most important variable for this purpose is Principal Diagnosis.  

The quality of Principal Diagnosis coding is the subject of various coding audits in which a 
selection of records undergo independent recoding and the results are compared with the 
codes originally assigned. The Australian Coding Benchmark Audit—a method for auditing 
the diagnosis codes assigned to separation records in Australia—has been published by the 
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National Centre for Classification in Health (NCCH 2000). Neither this nor any other 
auditing method is mandated. The extent of auditing undertaken is difficult to assess; results 
are usually treated as confidential and are usually not published.   

A second type of tool for quality checking is also exemplified by a product of the NCCH. 
Performance Indicators for Coding Quality (PICQ) (NCCH 2006). PICQ is software that 
screens coded records for compliance with the Australian Coding Standards for the ICD-10-
AM and the Australian Classification of Health Interventions. It flags errors, and probable 
errors: allowing checking and recoding. This sort of tool can also be used to detect patterns 
of errors (e.g. a high prevalence of doubtful codes for records from a particular specialty in a 
hospital), which can be used to prompt investigation and corrective action. As with audits, 
application of such tools is not mandatory, and the extent of their use is unknown.  

Introduction of indicators of in-hospital mortality is likely to heighten interest in the quality 
of the data on which they are based. Confidence in the indicators is likely to be enhanced by 
undertaking and publishing data-quality audits. An example of a project and study design 
that could be adapted for this purpose is the study of the quality of external causes coding in 
a sample of records from a sample of hospitals in four states, which has recently been 
undertaken by a team led by Dr Kirsten McKenzie of the Queensland University of 
Technology (a paper relevant to this point is in preparation but has not yet been published)  

6.6 International benchmarking 
In order to provide an accurate point of comparison with OECD countries, the model used to 
calculate in-hospital mortality should be consistent with the models and methods produced 
elsewhere. As yet, there is no internationally governed or stipulated standard practice for 
calculating HSMRs; however, the RACM model is consistent with how HSMRs are 
calculated in a number of different countries. The ERM model makes significant 
improvements to the RACM and we would suggest that, with proper peer-reviewed scrutiny 
and replication, it may be suggested as a potential candidate for an International standard.  

Alternatively, the best performing model developed on the basis of Australian data could be 
used for national purposes. Additional analysis using a poorer-performing, but more widely-
used, model (i.e. RACM) could be undertaken for the specific purpose of international 
comparisons.  

6.7 Conclusion 
The literature review in this report shows an emerging international consensus on best 
practice for national studies of hospital mortality, concerning a measure (the  
risk-adjusted HSMR factors to be included in risk-adjustment models, modelling methods, 
and types of cases to exclude (e.g. palliative-care cases). While discussion continues on the 
adequacy of administrative data for measuring in-hospital mortality, administrative data 
from good-quality systems appear to be adequate. In-hospital mortality rates are now 
reported regularly and publicly in several countries or jurisdictions within countries (United 
Kingdom, the Netherlands, Canada, and Queensland, Australia). 

We applied two models: the most widely used approach, the RACM model, and the better-
performing ERM model. This demonstrates that national indictors of in-hospital mortality 
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can be produced using the Australian NHMD, and that findings have statistical properties 
similar to those reported elsewhere.  

A longitudinal study of 3 years of data—following the approach of a recently-reported 
national study of in-hospital mortality in the Netherlands—provides evidence suggesting 
that although some unexplained variation in risk-adjusted HSMRs remains after modelling, 
Australian administrative data provide a strong ‘signal’ related to hospital-specific values. 
The findings were similar to those reported for the Netherlands.  

Although further work is required to confirm the findings of this project, to elaborate them 
(e.g. to review and refine specifications for indicator case inclusion) and to extend them to 
issues that we could not deal with in this study (e.g. data linkage to include deaths within 30 
days), it appears that Australian hospital data—like data from Canada, England and the 
Netherlands—can be used to measure risk-adjusted in-hospital mortality.  

Variations in hospital mortality appear to fulfil the necessary criteria to qualify as a 
performance measure. The questions that remain are exactly which indicators, used in 
exactly which ways.  

The literature review pointed to the continuing uncertainty concerning the relationship 
between variations in hospital mortality and other measures of hospital structure and 
process. This does not argue against the use of mortality-based indicators. In our view, it 
does mean that variations in hospital mortality measures should be viewed as screening 
tests. High or rising HSMRs should not be assumed to be definitively diagnostic of poor 
quality or safety. Nor should low or declining HSMRs be assumed to mean that all is well. 
Such results produced by a screening tool signal that further investigation is warranted to 
understand “What goes on here?’ 
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Appendix 1 Diagnoses accounting for 80% 
of in-hospital deaths 

Cases in the NHMD with data-year 2005–06 and satisfying study inclusion criteria were 
summarised according to the frequency of deaths in hospital, by three character ICD-10-AM 
code. The 68 codes listed in Table A1 are the ones with the highest frequency of deaths. 
Between them, the 68 codes were present in less than 20% of records but 80% of deaths. 

Table A1.1: Principal diagnosis codes occurring most frequently among in-hospital deaths in  
2005–06 

ICD 
code Description 

A41 Other sepsis 

C15 Malignant neoplasm of oesophagus 

C16 Malignant neoplasm of stomach 

C18 Malignant neoplasm of colon 

C20 Malignant neoplasm of rectum 

C22 Malignant neoplasm of liver and intrahepatic 
bile ducts 

C25 Malignant neoplasm of pancreas 

C34 Malignant neoplasm of bronchus and lung 

C45 Mesothelioma 

C50 Malignant neoplasm of breast 

C56 Malignant neoplasm of ovary 

C61 Malignant neoplasm of prostate 

C64 Malignant neoplasm of kidney, except renal 
pelvis 

C67 Malignant neoplasm of bladder 

C71 Malignant neoplasm of brain 

C78 Secondary malignant neoplasm of respiratory 
and digestive organs 

C79 Secondary malignant neoplasm of other sites 

C80 Malignant neoplasm without specification of 
site 

C83 Diffuse non-Hodgkin lymphoma 

C85 Other and unspecified types of non-Hodgkin 
lymphoma 

C90 Multiple myeloma and malignant plasma cell 
neoplasms 

C91 Lymphoid leukaemia 

C92 Myeloid leukaemia 

E11 Type 2 diabetes mellitus 

E86 Volume depletion 

ICD 
code Description 

E87 Other disorders of fluid, electrolyte and acid-
base balance 

G93 Other disorders of brain 

I20 Angina pectoris 

I21 Acute myocardial infarction 

I25 Chronic ischaemic heart disease 

I26 Pulmonary embolism 

I46 Cardiac arrest 

I48 Atrial fibrillation and flutter 

I49 Other cardiac arrhythmias 

I50 Heart failure 

I60 Subarachnoid haemorrhage 

I61 Intracerebral haemorrhage 

I62 Other nontraumatic intracranial haemorrhage 

I63 Cerebral infarction 

I64 Stroke, not specified as haemorrhage or 
infarction 

I70 Atherosclerosis 

I71 Aortic aneurysm and dissection 

J15 Bacterial pneumonia, not elsewhere 
classified 

J18 Pneumonia, organism unspecified 

J22 Unspecified acute lower respiratory infection 

J44 Other chronic obstructive pulmonary disease 

J69 Pneumonitis due to solids and liquids 

J84 Other interstitial pulmonary diseases 

J90 Pleural effusion, not elsewhere classified 

J96 Respiratory failure, not elsewhere classified 

K52 Other noninfective gastroenteritis and colitis 

 (continued)
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Table A1.1 (continued): Principal diagnosis codes occurring most frequently among in-
hospital deaths in 2005–06 

ICD 
code Description 

K55 Vascular disorders of intestine 

K56 Paralytic ileus and intestinal obstruction 
without hernia 

K57 Diverticular disease of intestine 

K63 Other diseases of intestine 

K70 Alcoholic liver disease 

K72 Hepatic failure, not elsewhere classified 

K85 Acute pancreatitis 

K92 Other diseases of digestive system 

 

ICD 
code Description 

L03 Cellulitis 

N17 Acute renal failure 

N18 Chronic renal failure 

N39 Other disorders of urinary system 

R55 Syncope and collapse 

S06 Intracranial injury 

S32 Fracture of lumbar spine and pelvis 

S72 Fracture of femur 

T81 Complications of procedures, not elsewhere 
classified 
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Appendix 3 Funnel plots of HSMRs in 
2005–06 
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 Figure A3.1: Variation in HSMRs according to the expected number of deaths and the size  
of the institution, peer group C1, and C2, 80% of in-hospital mortality 
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 Figure A3.2: Variation in HSMRs according to the expected number of deaths and the size  
of the institution, peer group C1, and C2, 20% of in-hospital mortality 
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 Figure A3.3: Variation in HSMRs according to the expected number of deaths and the size  
of the institution, peer group C1, and C2, 100% of in-hospital mortality 
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 Figure A3.4: Variation in HSMRs according to the expected number of deaths and the size  
of the institution, peer group D1, D2 and D2, 80% of in-hospital mortality 
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 Figure A3.5: Variation in HSMRs according to the expected number of deaths and the size  
of the institution, peer group D1, D2 and D3, 20% of in-hospital mortality 
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 Figure A3.6: Variation in HSMRs according to the expected number of deaths and the size  
of the institution, peer group D1, D2 and D3, 100% of in-hospital mortality 
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Appendix 4 Caterpillar plots 
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Figure A4.1. Caterpillar plots: variations of format and scaling 

 

Figure A4.1a presents HSMRs for a group of hospitals. The figure is a fairly standard 
caterpillar plot. The y-axis is linear and the point estimates have more visual emphasis than 
the confidence intervals. 

Figures A4.1b and A4.1c present the same HSMRs as Figure A4.1a. Figure A4.1b differs only 
in giving more visual emphasis to the confidence intervals, on the grounds that this will 
reduce a tendency of readers to focus on the point estimates, thus treating the figure like a 
league table.  

Figure A4.2c presents the same data with the HSMRs placed on a log scale. The argument for 
doing this is that because the HSMR is a ratio it should be presented on a ratio scale. An 
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HSMR of 50 is half the reference value of 100 and an HSMR of 200 is twice the reference 
value. Use of a log scale places HSMRs of 50 and 200 the same distance from the line 
marking 100. (Guide-lines have been placed on Figure A4.2b at points corresponding to half 
and double 100, one-third and triple, and so on.) 

An effect of the transformation is to give more visual emphasis to HSMRs that are below 100, 
especially those well below it. Conversely, HSMRs that are well above 100 have less visual 
emphasis.  

Figure A4.2 shows the same set of HSMRs in three further ways. Like Figure A4.1c, all of 
these figures place the HSMRs on a log scale. The main difference is that the presentation has 
been transposed. The result is somewhat similar to a forest plot. Although not done here, this 
orientation lends itself to inclusion of hospital names in the plot. The names can be placed in 
the ordinary orientation for reading and many names can be shown in a figure that will fit on 
a single page.  

The first chart in Figure A4.2, like all of those in Figure A4.1, shows the point estimate of 
HSMR as a fixed symbol. The second differs by using a circle centred on the point estimate 
value, the size of which corresponds to the size of the hospital (measured in terms of casemix 
adjusted separations). Funnel plots include that information. The third has both a small 
symbol marking the point estimate and a circle indicating hospital size. 
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 Figure A4.2. Three presentations of transposed log-scaled caterpillar plots 
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Appendix 5 Data issues 

National Hospital Morbidity Database 
The hospital separations data were provided by the AIHW, from the NHMD. All data 
elements within the NHMD used in this study conform to the requirements and definitions 
set out in the National Health Data Dictionary (HDSC 2006) unless otherwise specified. 

Detailed information about individual data elements within the NHMD can be found within 
the National Health Data Dictionary or online using METEOR 
(<http://meteor.aihw.gov.au>)—the AIHW's Metadata Online Registry.  

For further information about the data used in this project and about the topics below, 
readers are referred to the AIHW publication Australian Hospital Statistics, 2005–06 (AIHW 
2007) and the equivalent publications for data-years 2004–05 and 2006–07. 

The following sections are taken from the Appendixes of Australian Hospital Statistics 2005–
06 (AIHW 2007) and provide information about categories and classifications used in this 
report.  

Public and private hospitals 
Taken from: Australian Hospital Statistics 2005–06 Appendix 2: Hospitals contributing to the 
report and public hospital peer groups (AIHW 2007: 311)  

‘Throughout this report, unless otherwise specified: 

• public acute hospitals and public psychiatric hospitals are included in the public 
hospital (public sector) category 

• all public hospitals other than public psychiatric hospitals are included in the public 
acute hospital category 

• private psychiatric hospitals, private free-standing day hospital facilities and other 
private hospitals are included in the private hospital (private sector) category 

• all private hospitals other than private free-standing day hospital facilities are included 
in the other private hospitals category. 

There is currently some variation between jurisdictions in whether hospitals that 
predominantly provide public hospital services, and that are privately owned and/or 
operated, are reported as public or private hospitals. A selection of these hospitals is listed in 
Table A2.1 in the AIHW report with information on whether they are reported as public or 
private hospitals. 

Other changes in hospital ownership or management arrangements can also affect whether 
hospital activity is reported as public or private. For example, between 2003–04 and 2004–05 
two private hospitals in Western Australia were purchased by the Western Australian 
Department of Health and were amalgamated with two existing public hospitals. Hence the 
activity associated with the former private hospitals is now included in the activity reporting 
of the two public hospitals. From 2004–05, the Mersey Community Hospital in Tasmania, 
which previously operated as a private hospital providing predominantly public services on 
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a contracted basis, merged with the Northwest Regional Hospital and is categorised as a 
public hospital.’  

Public hospital peer groups 
Taken from: Australian Hospital Statistics 2005–06. Appendix 2: Hospitals contributing to the 
report and public hospital peer groups (AIHW 2007: 317) 

The AIHW worked with the National Health Ministers’ Benchmarking Working Group 
(NHMBWG) and the National Health Performance Committee (NHPC) to develop a national 
public hospital peer group classification for use in presenting data on costs per casemix-
adjusted separation. The aim was to allow more meaningful comparison of the data than 
comparison at the jurisdiction level would allow. 

The peer groups were therefore designed to explain variability in the average cost per 
casemix-adjusted separation. They also group hospitals into broadly similar groups in terms 
of their range of admitted patient activity, and their geographical location, with the peer 
groups allocated names that are broadly descriptive of the types of hospitals included in 
each category. Although not specifically designed for purposes other than the cost per 
casemix-adjusted separation analysis, the peer group classification is recognised as a useful 
way to categorise hospitals for other purposes, including the presentation of other data.’ 

The peer group to which each public hospital was assigned for 2005–06 is included in Table 
A2.2 within the Australian Hospital Statistics 2005–06 publication and is summarised in 
Table 2 in Section 4.1.2 of this report. 

SEIFA 
Taken from: Australian Hospital Statistics 2005–06. Appendix 1: Technical notes (AIHW 
2007: 301–2) 

The ‘SEIFA Index of Advantage/Disadvantage was generated by the ABS using a 
combination of Census data, including variables measuring both advantage and 
disadvantage. A higher score on the index indicates that an area has attributes that measure 
advantage, such as a relatively high proportion of people with high incomes or a skilled 
workforce. It also means an area has a low proportion of people with variables that measure 
disadvantage, such as low incomes and relatively few unskilled people in the workforce. 

Conversely, a low score on the index indicates that an area has a high proportion of 
individuals with variables that measure disadvantage, such as low incomes and more 
employees in unskilled occupations, and a low proportion of people with variables that 
measure advantage, such as high incomes or people in skilled occupations. Hence, the index 
offsets any disadvantage in an area with advantage.  

Separation rates by quintile of advantage/disadvantage were generated by the AIHW by 
using the SEIFA scores for this study for the SLA of usual residence of the patient reported 
for each separation. The most disadvantaged quintile represents the areas containing the 20% 
of the population with the least advantage/most disadvantage and the most advantaged 
quintile represents the areas containing the 20% of the population with the least 
disadvantage/most advantage.’ 
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Errors, inconsistencies and uncertainties 
NHMD data are generally abstracted from records, entered and coded in hospitals, passed to 
state and territory health departments, then to the AIHW before being provided to the 
National Injury Surveillance Unit (NISU). Processing occurs at each of these steps. Errors and 
inconsistencies can arise due to the large number of people and processes involved in 
providing the data. Some variations occur in reporting and coding although Coding 
Standards, National Minimum Data Sets and other mechanisms have reduced this. 

Quality of ICD-10-AM coded data 
Taken from Australian Hospital Statistics 2005–06. Appendix 1: Technical notes (AIHW 2007: 
288–9) 

 ‘Diagnosis, procedure and external cause data for 2005–06 were reported to the NHMD by 
all states and territories using the fourth edition of the International statistical classification 
of diseases and related health problems, 10th revision, Australian modification (ICD-10-AM) 
(NCCH 2004). 

The quality of coded diagnosis, procedure and external cause data can be assessed using 
coding audits in which, in general terms, selected records are independently recoded, and 
the resulting codes compared with the codes originally assigned for the separation. There are 
no national standards for this auditing, so it is not possible to use information on coding 
audits to make quantitative assessments of data quality on a national basis. 

The quality and comparability of the coded data can, however, be gauged by information 
provided by the states and territories on the quality of the data, by the numbers of diagnosis 
and procedure codes reported and by assessment of apparent variation in the reporting of 
additional diagnoses. The comparability of the data can also be influenced by state-specific 
coding standards.’ 
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